Diffeomorfismo

Da Wikipedia, l'enciclopedia libera.
Jump to navigation Jump to search

Un diffeomorfismo è una funzione tra due varietà differenziabili con la proprietà di essere differenziabile, invertibile e di avere l'inversa differenziabile.

Definizione[modifica | modifica wikitesto]

Date due varietà e , una mappa differenziabile è detta diffeomorfismo se è una bigezione e se anche la sua inversa è differenziabile. Se queste funzioni sono differenziabili per continuità volte, è detta un -diffeomorfismo.

Due varietà e sono diffeomorfe (indicato solitamente con ) se c'è un diffeomorfismo da a . Sono - diffeomorfe se c'è tra loro una mappa bigettiva differenziabile per continuità volte la cui inversa è anch'essa differenziabile per continuità volte.

Negli spazi euclidei[modifica | modifica wikitesto]

In realtà, nel definire una varietà differenziabile, si usa il concetto di diffeomorfismo, anche se ristretto al caso di regioni di spazi euclidei. Per questo motivo è necessario, ai fini del rigore formale, avere a disposizione una definizione di diffeomorfismo tra spazi euclidei indipendente dal concetto di varietà differenziabile; dunque:

Una funzione tra due regioni (insiemi aperti e connessi) di spazi euclidei , con regione di e regione di , è un diffeomorfismo se è differenziabile, invertibile e la sua inversa è anch'essa differenziabile.

In una variabile, un diffeomorfismo è una funzione con differenziale quindi invertibile con inversa anch'essa differenziabile. Chiaramente, una volta definite le varietà differenziabili la seconda definizione diventa un caso particolare della prima.

Diffeomorfismi e omeomorfismi[modifica | modifica wikitesto]

Di fatto i diffeomorfismi giocano in geometria differenziale lo stesso ruolo degli omeomorfismi in topologia.

È abbastanza facile trovare un omeomorfismo tra varietà differenziabili che non sia un diffeomorfismo, meno facile è trovare varietà omeomorfe che non siano anche diffeomorfe. È possibile dimostrare che per dimensioni minori o uguali a 3, tutte le varietà omeomorfe sono anche diffeomorfe; per dimensioni superiori a 3 è possibile trovare dei controesempi. Il primo controesempio di questo tipo fu costruito da John Milnor in dimensione 7: la sfera di Milnor.

Bibliografia[modifica | modifica wikitesto]

  • Augustin Banyaga, The structure of classical diffeomorphism groups, Mathematics and its Applications, 400, Kluwer Academic, 1997, ISBN 0-7923-4475-8.
  • Peter L. Duren, Harmonic Mappings in the Plane, Cambridge Mathematical Tracts, 156, Cambridge University Press, 2004, ISBN 0-521-64121-7.
  • Morris Hirsch, Differential Topology, Berlin, New York, Springer-Verlag, 1997, ISBN 978-0-387-90148-0.
  • Andreas Kriegl e Peter Michor, The convenient setting of global analysis, Mathematical Surveys and Monographs, 53, American Mathematical Society, 1997, ISBN 0-8218-0780-3.
  • J. A. Leslie, On a differential structure for the group of diffeomorphisms, in Topology. An International Journal of Mathematics, vol. 6, 1967, pp. 263–271, ISSN 0040-9383 (WC · ACNP), MR 0210147.
  • John Milnor, Collected Works Vol. III, Differential Topology, American Mathematical Society, 2007, ISBN 0-8218-4230-7.
  • Hideki Omori, Infinite-dimensional Lie groups, Translations of Mathematical Monographs, 158, American Mathematical Society, 1997, ISBN 0-8218-4575-6.

Voci correlate[modifica | modifica wikitesto]

Matematica Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica