Da Wikipedia, l'enciclopedia libera.
In matematica per prodotto di Wallis si intende un'espressione del valore di π trovata nel 1655 dal matematico John Wallis .
∏
n
=
1
∞
(
2
n
)
(
2
n
−
1
)
⋅
(
2
n
)
(
2
n
+
1
)
=
2
1
⋅
2
3
⋅
4
3
⋅
4
5
⋅
6
5
⋅
6
7
⋅
8
7
⋅
8
9
⋯
=
π
2
{\displaystyle \prod _{n=1}^{\infty }{\frac {(2n)}{(2n-1)}}\cdot {\frac {(2n)}{(2n+1)}}={\frac {2}{1}}\cdot {\frac {2}{3}}\cdot {\frac {4}{3}}\cdot {\frac {4}{5}}\cdot {\frac {6}{5}}\cdot {\frac {6}{7}}\cdot {\frac {8}{7}}\cdot {\frac {8}{9}}\cdots ={\frac {\pi }{2}}}
Consideriamo innanzitutto che le radici di sin(x)/x sono ±nπ, dove n = 1, 2, 3, ...
Possiamo quindi esprimere il seno tramite un prodotto infinito di fattori lineari dati dalle sue radici:
sin
(
x
)
x
=
k
(
1
−
x
π
)
(
1
+
x
π
)
(
1
−
x
2
π
)
(
1
+
x
2
π
)
(
1
−
x
3
π
)
(
1
+
x
3
π
)
⋯
con
k
costante
{\displaystyle {\frac {\sin(x)}{x}}=k\left(1-{\frac {x}{\pi }}\right)\left(1+{\frac {x}{\pi }}\right)\left(1-{\frac {x}{2\pi }}\right)\left(1+{\frac {x}{2\pi }}\right)\left(1-{\frac {x}{3\pi }}\right)\left(1+{\frac {x}{3\pi }}\right)\cdots \qquad {\textrm {con}}~k~{\textrm {costante}}}
Per trovare la costante k, consideriamo il limite da entrambe le direzioni:
lim
x
→
0
sin
(
x
)
x
=
lim
x
→
0
(
k
(
1
−
x
π
)
(
1
+
x
π
)
(
1
−
x
2
π
)
(
1
+
x
2
π
)
(
1
−
x
3
π
)
(
1
+
x
3
π
)
⋯
)
=
k
{\displaystyle \lim _{x\to 0}{\frac {\sin(x)}{x}}=\lim _{x\to 0}\left(k\left(1-{\frac {x}{\pi }}\right)\left(1+{\frac {x}{\pi }}\right)\left(1-{\frac {x}{2\pi }}\right)\left(1+{\frac {x}{2\pi }}\right)\left(1-{\frac {x}{3\pi }}\right)\left(1+{\frac {x}{3\pi }}\right)\cdots \right)=k}
Sfruttando il fatto che:
lim
x
→
0
sin
(
x
)
x
=
1
{\displaystyle \lim _{x\to 0}{\frac {\sin(x)}{x}}=1}
ricaviamo k=1. Dunque otteniamo la seguente formula di Eulero-Wallis per il seno:
sin
(
x
)
x
=
(
1
−
x
π
)
(
1
+
x
π
)
(
1
−
x
2
π
)
(
1
+
x
2
π
)
(
1
−
x
3
π
)
(
1
+
x
3
π
)
⋯
{\displaystyle {\frac {\sin(x)}{x}}=\left(1-{\frac {x}{\pi }}\right)\left(1+{\frac {x}{\pi }}\right)\left(1-{\frac {x}{2\pi }}\right)\left(1+{\frac {x}{2\pi }}\right)\left(1-{\frac {x}{3\pi }}\right)\left(1+{\frac {x}{3\pi }}\right)\cdots }
sin
(
x
)
x
=
(
1
−
x
2
π
2
)
(
1
−
x
2
4
π
2
)
(
1
−
x
2
9
π
2
)
⋯
{\displaystyle {\frac {\sin(x)}{x}}=\left(1-{\frac {x^{2}}{\pi ^{2}}}\right)\left(1-{\frac {x^{2}}{4\pi ^{2}}}\right)\left(1-{\frac {x^{2}}{9\pi ^{2}}}\right)\cdots }
Poniamo x=π/2,
1
π
/
2
=
(
1
−
1
2
2
)
(
1
−
1
4
2
)
(
1
−
1
6
2
)
⋯
=
∏
n
=
1
∞
(
1
−
1
4
n
2
)
{\displaystyle {\frac {1}{\pi /2}}=\left(1-{\frac {1}{2^{2}}}\right)\left(1-{\frac {1}{4^{2}}}\right)\left(1-{\frac {1}{6^{2}}}\right)\cdots =\prod _{n=1}^{\infty }(1-{\frac {1}{4n^{2}}})}
π
2
=
∏
n
=
1
∞
(
4
n
2
4
n
2
−
1
)
{\displaystyle {\frac {\pi }{2}}=\prod _{n=1}^{\infty }({\frac {4n^{2}}{4n^{2}-1}})}
=
∏
n
=
1
∞
(
2
n
)
(
2
n
−
1
)
⋅
(
2
n
)
(
2
n
+
1
)
=
2
1
⋅
2
3
⋅
4
3
⋅
4
5
⋅
6
5
⋅
6
7
⋅
8
7
⋅
8
9
⋯
=
π
2
{\displaystyle =\prod _{n=1}^{\infty }{\frac {(2n)}{(2n-1)}}\cdot {\frac {(2n)}{(2n+1)}}={\frac {2}{1}}\cdot {\frac {2}{3}}\cdot {\frac {4}{3}}\cdot {\frac {4}{5}}\cdot {\frac {6}{5}}\cdot {\frac {6}{7}}\cdot {\frac {8}{7}}\cdot {\frac {8}{9}}\cdots ={\frac {\pi }{2}}}
QED
L'approssimazione di Stirling per n ! stabilisce che
n
!
=
2
π
n
(
n
e
)
n
(
1
+
O
(
1
n
)
)
{\displaystyle n!={\sqrt {2\pi n}}{\left({\frac {n}{e}}\right)}^{n}\left(1+O\left({\frac {1}{n}}\right)\right)}
per n → ∞. Consideriamo ora l'approssimazione finita con il prodotto di Wallis, ottenuta prendendo i primi k termini del prodotto:
p
k
=
∏
n
=
1
k
(
2
n
)
(
2
n
−
1
)
⋅
(
2
n
)
(
2
n
+
1
)
{\displaystyle p_{k}=\prod _{n=1}^{k}{\frac {(2n)}{(2n-1)}}\cdot {\frac {(2n)}{(2n+1)}}}
pk può essere scritto come
p
k
=
1
2
k
+
1
∏
n
=
1
k
(
2
n
)
4
(
2
n
(
2
n
−
1
)
)
2
=
1
2
k
+
1
⋅
4
2
k
k
!
4
(
2
k
!
)
2
.
{\displaystyle p_{k}={1 \over {2k+1}}\prod _{n=1}^{k}{\frac {(2n)^{4}}{(2n(2n-1))^{2}}}={1 \over {2k+1}}\cdot {{4^{2k}\,k!^{4}} \over {(2k\,!)^{2}}}\ .}
Sostituendo l'approssimazione di Stirling in questa espressione (sia per k ! che per 2k !) possiamo dedurre (dopo un breve calcolo) che pk converge a π/2 per k → ∞.