Punto di aderenza

Da Wikipedia, l'enciclopedia libera.

In topologia generale, un punto di aderenza ad un sottospazio di uno spazio topologico è un punto che contiene punti "arbitrariamente vicini" di questo sottospazio. Si tratta di una nozione meno restrittiva di quella di punto di accumulazione.

Definizione[modifica | modifica wikitesto]

Un punto è aderente ad se e solo se, comunque si prenda un intorno dell'elemento , l'intersezione dell'intorno con l'insieme è sempre non vuota.

Ovvero, è un punto di aderenza per se e solo se è un punto di accumulazione per o è un punto isolato di .

Spazi topologici[modifica | modifica wikitesto]

Un punto appartenente ad uno spazio topologico è detto punto di aderenza (o punto di chiusura) per un sottoinsieme di se ogni aperto contenente interseca . In simboli:

Spazi metrici[modifica | modifica wikitesto]

In uno spazio metrico, se si considera la topologia naturalmente indotta dalla metrica, la definizione è equivalente alla richiesta seguente.

dove con si indica la palla di raggio e centro . Non ne consegue (come nel caso dei punti di accumulazione) che in ogni palla vi siano infiniti punti di .

Differenza con i punti di accumulazione[modifica | modifica wikitesto]

Tutti i punti di accumulazione di sono anche aderenti ma non è valido il viceversa. Non è richiesto infatti che ogni intorno di intersechi in punti diversi da . L'intersezione non vuota può essere garantita dallo stesso punto, purché appartenente a .

Ne consegue che tutti i punti di sono aderenti in , anche quando non sono di accumulazione. In tale ultimo caso si parla di punti isolati.

Chiusura di un insieme[modifica | modifica wikitesto]

L'insieme dei punti di aderenza di è detto chiusura (o aderenza) di .

Voci correlate[modifica | modifica wikitesto]

Matematica Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica