Topologia di Zariski

Da Wikipedia, l'enciclopedia libera.

In matematica, e più precisamente in geometria algebrica, la topologia di Zariski (dal nome del matematico Oscar Zariski) è una topologia sullo spazio affine i cui chiusi sono tutti e soli gli insiemi algebrici, cioè i luoghi dove si annullano contemporaneamente i polinomi di un ideale di .[1] Si può costruire la topologia di Zariski anche sullo spazio proiettivo considerando come chiusi gli insiemi algebrici proiettivi.

Proprietà[modifica | modifica wikitesto]

Sia uno spazio affine o proiettivo con infiniti elementi considerato con la topologia di Zariski, allora:

  • non è uno spazio di Hausdorff;
  • è uno spazio T1, in quanto i punti sono chiusi;
  • è compatto e in particolare lo è ogni suo sottoinsieme chiuso;
  • è uno spazio topologico irriducibile e in particolare gli aperti non vuoti di sono densi.

Limitatezza[modifica | modifica wikitesto]

La topologia di Zariski segue facilmente dalle prime proprietà dell'anello dei polinomi ed è utile in molte situazioni; tuttavia, senza una scelta accurata dei morfismi accettati, porta a risultati poco interessanti: ad esempio, due curve algebriche sono sempre omeomorfe, solo per avere la stessa cardinalità. Naturalmente, questo omeomorfismo non è un morfismo nel senso della geometria algebrica, ma questa scelta si pone al di sopra della topologia, non è intrinseca.

Note[modifica | modifica wikitesto]

  1. ^ M. Manetti, p. 40

Bibliografia[modifica | modifica wikitesto]

Matematica Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica