Teorema di Bolzano

Da Wikipedia, l'enciclopedia libera.

In analisi matematica il teorema di Bolzano, detto anche teorema degli zeri per le funzioni continue, assicura l'esistenza di almeno una radice delle funzioni continue reali che assumano segni opposti ai due estremi di un intervallo. Il teorema è stato dimostrato dal matematico boemo Bernard Bolzano.

Enunciato[modifica | modifica wikitesto]

Consideriamo una funzione continua. Supponiamo che e abbiano segno opposto, ovvero

Allora esiste almeno un punto tale che

[1].

Dimostrazione (per assurdo)[modifica | modifica wikitesto]

Senza perdita di generalità poniamo . La dimostrazione seguente è una dimostrazione per assurdo. Si suppone quindi che sia diverso da zero per ogni nell'intervallo. Si definisce l'insieme seguente :

L'insieme non è vuoto, perché contiene , inoltre è superiormente limitato da poiché dunque per l'assioma di completezza dei reali esiste .

L'estremo superiore è caratterizzato da queste due proprietà

  1. è un maggiorante di ,
  2. se allora non è un maggiorante di .

Il valore è diverso da zero, ed è quindi positivo o negativo. In entrambi i casi si giunge ad un assurdo.

  • Se , allora per le ipotesi e per la permanenza del segno sulle funzioni continue esiste un tale che per ogni appartenente all'intorno vale , ma ciò è assurdo perché in contrasto con la prima proprietà dell'estremo superiore;
  • Se , allora per le ipotesi e sempre per la permanenza del segno sulle funzioni continue, esiste tale che per ogni appartenente all'intorno vale : ciò è in contrasto con la seconda proprietà dell'estremo superiore.

Dimostrazione (con metodo di bisezione)[modifica | modifica wikitesto]

L'idea è quella di costruire una successione reale convergente ad un punto che si verifichi essere proprio lo zero della funzione data.

Si ponga , .

Poi si definisca .

Se allora non c'è più niente da dimostrare.

Se invece si ponga e ; al contrario, se , si ponga e .

Al generico passo si ponga induttivamente . Se non c'è più nulla da dimostrare, se si ponga e , se invece si ponga e .

Risultano così costruite induttivamente le tre successioni , e .

Si vede immediatamente che è non decrescente, è noncrescente, e nondimeno per ogni (quindi per il teorema delle successioni monotone e esistono finiti).

Si nota poi che , e di conseguenza .

Quindi , cioè .

Possiamo allora applicare il teorema dei carabinieri e concludere che:

Sia allora tale limite comune. La continuità della funzione ci assicura che .

Nondimeno il fatto che sia chiuso assicura che .

D'altra parte, per costruzione induttiva si ha che .

Quindi possiamo applicare il teorema di conservazione delle disuguaglianze ed affermare:

Quindi , di conseguenza .

Siccome poi e non sono zeri di , deve essere che , come volevamo.

Ovviamente il teorema vale anche nell'ipotesi che , basta applicare il procedimento visto a , sicuri del fatto che gli zeri di sono tutti e soli quelli di .

Osservazioni[modifica | modifica wikitesto]

  • Nel caso ci si trovi in presenza di una funzione strettamente monotona, il teorema dice che lo zero è unico; se non si fa tale ipotesi gli zeri possono essere più di uno.
  • Il teorema vale in ipotesi molto più generali sull'insieme di definizione di : basta che esso sia uno spazio topologico connesso.

Note[modifica | modifica wikitesto]

  1. ^ P. M. Soardi, p. 185

Bibliografia[modifica | modifica wikitesto]

Collegamenti esterni[modifica | modifica wikitesto]

Matematica Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica