Cartesio

Da Wikipedia, l'enciclopedia libera.
Se riscontri problemi nella visualizzazione dei caratteri, clicca qui.
bussola Disambiguazione – Se stai cercando altri significati, vedi Cartesio (disambigua).
(LA)
« Ego cogito, ergo sum, sive existo»
(IT)
« Io penso, dunque sono, ossia esisto. »
(René Descartes, Discours de la Méthode, IV.[1])
René Descartes in un ritratto di Frans Hals (1649).

René Descartes[2] [ʀəˈne deˈkaʀt], latinizzato in Renatus Cartesius e italianizzato in Renato Cartesio[3] (La Haye en Touraine, 31 marzo 1596Stoccolma, 11 febbraio 1650) è stato un filosofo e matematico francese. È ritenuto fondatore della matematica e della filosofia moderna. [4] [5]

Cartesio estese la concezione razionalistica di una conoscenza ispirata alla precisione e certezza delle scienze matematiche, così come era stata propugnata da Francesco Bacone, ma formulata e applicata effettivamente solo da Galileo Galilei, a ogni aspetto del sapere, dando vita a quello che oggi è conosciuto con il nome di razionalismo continentale, una posizione filosofica dominante in Europa tra il XVII e il XVIII secolo.

Biografia[modifica | modifica sorgente]

Le origini familiari[modifica | modifica sorgente]

La casa natale di Cartesio a La Haye

Cartesio nacque il 31 marzo del 1596 a La Haye,[6] in una casa «delle più nobili, delle più antiche e delle più in vista della Turenna».[7]

Il suo primo biografo, Pierre Borel, credeva invece che fosse nato nella casa che i Descartes possedevano a Châtellerault, nel Poitou: entrambe le case esistono ancora e del Poitou erano originari gli avi del filosofo, che non erano però nobili.

Il nonno Pierre Descartes era un medico e il figlio Joachim (1563-1640), che esercitò l'avvocatura a Parigi, nel 1585 acquistò la carica di consigliere del Parlamento di Rennes,[8] dove si trovava quando la moglie Jeanne Brochard (1570-1597) partorì René, terzo figlio dopo le nascite di Jeanne (1590-1640) e di Pierre (1591-1660).

René fu battezzato il 3 aprile nella chiesa di Saint-Georges, prendendo il nome dal padrino, lo zio materno e giudice a Poitiers, René Brochard des Fontaines.

L'infante fu subito affidato a una balia, che si prese a lungo cura di lui, gli sopravvisse e percepì dal filosofo, che prima di morire aveva chiesto ai fratelli di sostenerla, una pensione.

La madre morì il 13 maggio 1597, l'anno dopo la sua nascita, dando alla luce un figlio che le sopravvisse solo tre giorni.

Il vedovo Joachim Descartes si risposò intorno al 1600 con Anne Morin, una bretone conosciuta a Rennes, dalla quale ebbe due figli, Joachim (1602-1680) e Anne.

Orfano di madre e con il padre spesso assente, a prendersi cura di René furono soprattutto la nonna materna e la nutrice. Trascorse l'infanzia con i due fratelli a La Haye, ove un precettore privato gli impartì l'istruzione elementare: il costante pallore e una frequente tosse secca, che facevano pensare ai medici che non sarebbe vissuto a lungo,[9] ritardarono l'inizio dei suoi studi regolari.

Gli studi[modifica | modifica sorgente]

Portale del collegio di La Flèche

Solo nella ricorrenza della Pasqua del 1607[10] entrò nel collegio di La Flèche - fondato da Enrico IV nel 1603 e assegnato ai gesuiti - che già godeva di alta rinomanza e dove il fratello Pierre aveva iniziato gli studi nel 1604. Qui ebbe come condiscepolo il teologo e scienziato Marin Mersenne di cui fu per tutta la vita un amico che si occupò dei suoi affari in Francia quando egli dovette risiedere in Olanda.[11] Gli studenti, provenienti da ogni parte della Francia senza distinzione di classe sociale, erano tenuti al solo pagamento della pensione e i corsi prevedevano tre anni di studio della grammatica, tre anni di studi umanistici e tre anni di filosofia. Coloro che avessero voluto intraprendere la carriera ecclesiastica vi avrebbero continuato a studiare per altri cinque anni la teologia e le Scritture.

Scarso era l'insegnamento della matematica,[12] impartito per meno di un'ora al giorno ai soli studenti del secondo anno di filosofia. S'insegnava esclusivamente la filosofia aristotelica in un corso triennale ripartito nell'apprendimento della logica, basato sui manuali di Francisco Toledo e di Pedro da Fonseca,[13] della fisica[14] e della metafisica,[15] quest'ultima insieme con nozioni di filosofia morale.

Cartesio si mostrerà poi deluso dell'insegnamento ottenuto: «Sono stato allevato nello studio delle lettere fin dalla fanciullezza, e poiché mi si faceva credere che con esse si poteva conseguire una conoscenza chiara e sicura di tutto ciò che è utile nella vita, avevo un estremo desiderio di apprendere. Ma non appena ebbi concluso questo intero corso di studi, al termine del quale si è di solito annoverati tra i dotti, cambiai completamente opinione: mi trovavo infatti in un tale groviglio di dubbi e di errori da avere l'impressione di non aver ricavato alcun profitto, mentre cercavo di istruirmi, se non scoprire sempre più la mia ignoranza».[16]

Sono le considerazioni del Cartesio maturo che scrive il suo Metodo e lamenta che nelle scuole non si promuova lo spirito critico degli allievi; una tale volontà di ricerca personale era già presente nel giovane René: «Da giovane, quando mi si presentava qualche scoperta ingegnosa, mi domandavo se io stesso non fossi in grado di trovarla da solo, anche senza apprenderla dai libri».[17]

Secondo un aneddoto, il ragazzo ebbe una zia dal carattere molto dolce, con problemi a un occhio, perciò Cartesio si innamorava ogniqualvolta incontrava una donzella strabica.[18] Uscì dal collegio gesuita nel settembre del 1615, conservando un affetto riconoscente nei confronti del rettore, padre Ètienne Chalet, che gli fece «le veci del padre per tutto il periodo della gioventù»,[19] e per il regime di vita osservato nella scuola, durante il quale la sua salute si ristabilì completamente. Si stabilì a pensione presso un sarto di Poitiers per studiare giurisprudenza nella Università di quella città, dove il fratello Pierre si era laureato tre anni prima: il 9 novembre 1616 ottenne il baccalaureato e il giorno dopo la laurea in utroque iure.[20] Si riunì alla famiglia che, dopo il secondo matrimonio del padre, viveva a Rennes - dove anche la sorella Jeanne, sposata nel 1613 con Pierre Rogier, signore di Crévis, si era stabilita - o a Sucé, presso Nantes, dove la matrigna Anne Morin possedeva una casa.

L'incontro con Isaac Beeckman[modifica | modifica sorgente]

Breda: il Begijnhof

Raggiunta la maggiore età, con una salute recuperata e il desiderio di conoscere cose nuove, ai primi del 1618 Cartesio si arruolò volontario in uno dei due reggimenti francesi di stanza a Breda, in Olanda, sotto il comando del principe d'Orange. È un periodo di tregua della guerra che oppone la Francia alla Spagna: Cartesio aveva un valletto al suo servizio, ma l'ignoranza e la volgarità dei compagni, e l'ozio forzato a cui era spesso costretto non gli fecero amare l'ambiente militare. Tuttavia quel soggiorno si rivelerà importante sotto un altro aspetto: il 10 novembre conobbe casualmente il medico Isaac Beeckman, venuto da Middelburg a Breda per trovare lo zio e una ragazza da sposare ed entrambi si trovarono a cercare di risolvere un problema matematico. Il trentenne Beeckmam esercitò naturalmente una forte attrazione intellettuale su René e ne nacque un'amicizia che, pur contrastata negli anni, orienterà gli interessi di Cartesio verso le scienze matematiche.

Beeckman aveva l'abitudine di annotare osservazioni e problemi scientifici in un diario giunto fino a noi: in un problema posto da Beeckman a Cartesio – conoscendo lo spazio percorso da un grave in due ore, determinare lo spazio percorso dal medesimo in un'ora – la risposta di Cartesio è che la velocità del grave aumenta all'aumento dello spazio percorso, anziché al tempo trascorso.[21]

Cartesio concluse il 31 dicembre un breve trattato sulla musica intitolato Compendium musicae che offrì a Beeckman come regalo per il nuovo anno: ne ricevette in cambio un'agenda, che terrà sempre con sé.[22] Due note tracciate da Beeckam sul manoscritto del Compendium indicano che l'operetta fu il risultato di scambi di idee tra i due amici se non influenzata dalle opinioni del Beeckman: «I miei pensieri gli sono piaciuti», scrive Beeckmam, ripartendo il 2 gennaio 1619 per Middelburg, e «ciò conferma non poco quanto ho scritto sui modi».[23] Nel Compendium Cartesio si dice convinto che le diverse passioni suscitate dalla musica abbiano una giustificazione nella variazione delle misure dei suoni e nei rapporti tonali: se alla base dell'effetto emotivo prodotto dalla musica sull'ascoltatore sono meri rapporti quantitativi, egli riconosce che occorrerebbe una più precisa analisi della natura dell'anima umana e dei suoi movimenti per comprendere compiutamente le emozioni indotte dalla musica.[24]

I due amici rimasero in contatto epistolare: il 26 marzo 1619 Cartesio informò Beeckman di aver inventato dei compassi grazie ai quali aveva potuto formulare nuove dimostrazioni sui problemi relativi alla divisione degli angoli in parti uguali e alle equazioni cubiche, ripromettendosi di sviluppare queste scoperte in un trattato ove egli avrebbe esposto «una scienza del tutto nuova, con la quale si possano risolvere in generale tutte le questioni proponibili in qualsiasi specie di quantità, sia continua sia discreta». È la prima testimonianza dell'intuizione della geometria analitica: «nell'oscuro caos di questa scienza ho intravisto uno spiraglio di luce».[25]

A questo proposito, sebbene egli non ne sia stato l'inventore, Cartesio è conosciuto anche per la diffusione del cosiddetto Diagramma cartesiano il cui uso risale a epoche antiche.[26]

La Mirabilis Scientia[modifica | modifica sorgente]

Il castello di Neuburg sul Danubio

Il 29 aprile 1619, Descartes s'imbarcò da Amsterdam per Copenaghen: contava di visitare la Danimarca, poi la Polonia e l'Ungheria per raggiungere di qui la Boemia, ma rinunciò al lungo viaggio per dirigersi alla fine di luglio a Francoforte, dove il 27 agosto assistette all'incoronazione di Ferdinando II e s'intrattenne nella città brandeburghese per tutta la durata dei festeggiamenti. Con la ripresa di quella che verrà definita la Guerra dei Trent'anni, sembra che Cartesio si sia arruolato nell'esercito comandato da Massimiliano di Baviera e abbia passato l'inverno a Neuburg, nel nord della Baviera, in una confortevole e ben riscaldata casa sulla riva del Danubio: qui, prese un giorno «la decisione di studiare anche in stesso e d'impiegare tutte le forze del suo spirito a scegliere le strade che doveva seguire».[27]

Lo studio di noi stessi ci rende consapevoli di quante nozioni abbiamo accumulato nella mente sin dall'infanzia, senza che esse siano state sottoposte a un preventivo vaglio critico: perciò, «è quasi impossibile che i nostri giudizi siano così genuini e così solidi come sarebbero stati se sin dalla nascita avessimo avuto l'uso completo della ragione e se fossimo stati sempre guidati solo dalla ragione».[28] Occorre una revisione delle opinioni acquisite e la loro sostituzione, se necessario, con quelle legittimate da un criterio di verità.

Per intanto, egli non avrebbe accolto nessuna cosa per vera se non si fosse presentata alla mente «con tale chiarezza e distinzione da non avere alcun motivo di dubitarne». Poi, ogni problema doveva essere diviso in quante più parti possibili per meglio risolverlo e, «cominciando dagli oggetti più semplici e più facili da conoscere, salire a poco a poco, per gradi, fino alla conoscenza dei più complessi». Infine, fare «enumerazioni così complete e rassegne così generali da esser sicuro di non aver omesso nulla».[29]

Johannes Faulhaber

Quelle sono parole scritte circa quindici anni dopo nel Discorso sul metodo, ma in quel novembre del 1619 Cartesio, nel registro regalatogli dal Beeckman, in una sezione che egli stesso intitolò Olympica, scrisse che il 10 novembre, «pieno di entusiasmo», stava scoprendo i «fondamenti di una scienza mirabile» e narra di sogni e di visioni che resero agitata la notte,[30] ma non sappiamo con precisione a quale scienza qui alludesse Cartesio. L'ambasciatore francese in Svezia, Pierre Chanut, che conobbe molto bene Cartesio, dettando il suo epitaffio si riferì a questo episodio: «nel riposo dell'inverno, avvicinandosi ai misteri della natura con le leggi matematiche, osò sperare di aprire i segreti dell'una e dell'altra con la stessa chiave».[31]

Probabilmente, proseguendo le sue ricerche sulle corrispondenze dell'algebra con la geometria, aveva raggiunto la convinzione che il sapere potesse essere unificato in un'unica scienza della quale le singole discipline formavano una branca particolare, come scriverà nelle Regulae ad directionem ingenii: «Tutte le scienze non sono altro che l'umana sapienza che permane sempre unica e identica per quanto differenti siano gli oggetti cui si applica [...] Tutte le scienze sono così connesse tra loro che è molto più facile apprenderle insieme piuttosto che separarne una sola dalle altre».[32] Durante quell'inverno conobbe nella vicina Ulm il matematico Johannes Faulhaber, del quale potrebbe esserci qualche influenza nelle ricerche intraprese da Cartesio che portarono alla redazione dei Progymnasmata de solidorum elementis, dove tratta delle proprietà dei poliedri.

Lasciò Neuburg ai primi di marzo del 1620 e «in tutti i nove anni seguenti non fece altro che vagare qua e là per il mondo, cercando di essere spettatore piuttosto che attore in tutte le commedie che vi si rappresentavano», di acquisire conoscenze certe, scartando le dubbie, secondo i precetti del suo metodo, che egli applicava «in particolare a problemi di matematica o anche in altri che poteva assimilare ai problemi matematici, scindendoli da tutti i principi delle altre scienze che non trovava abbastanza solidi».[33] Si dice che Cartesio, durante i suoi viaggi in Germania, abbia cercato di avvicinare aderenti al movimento dei Rosacroce e anche che egli stesso si sia affiliato a quella confraternita.

Il problema di un possibile rapporto tra Cartesio e i Rosacroce fu sollevato per primo dal biografo Baillet il quale, citando passi di un perduto Studium bonae mentis, sostiene che Cartesio pensò che i rosacrociani potessero aver scoperto proprio quella nuova scienza che egli aveva intuito e che andava abbozzando. Si può escludere che egli si sia mai affiliato a quella fantomatica setta e non si sa se abbia mai conosciuto un rosacrociano, ma in qualche modo Cartesio dovette venire a conoscenza delle loro opinioni visto che, nella sezione del suo registro intitolata Thesaurus mathematicus e dedicata ironicamente «ai sapienti del mondo intero e particolarmente ai F.[ratelli] R.[osa] C.[roce] celeberrimi in G.[ermania]», Cartesio si burla di coloro che pretendono di «mostrare nuove meraviglie in tutte le scienze e di lenire le pene delle moltitudini», consumando inutilmente «l'olio della loro intelligenza».[34]

Il ritorno in Francia[modifica | modifica sorgente]

Lasciato l'esercito, nel 1622 tornava presso la famiglia a Rennes e si trasferiva nei primi mesi del 1623 a Parigi, ospite di un amico del padre, Nicolas Le Vasseur, che gli presentò il matematico Didier Dounot: in questo lasso di tempo potrebbe aver conosciuto anche Claude Mydorge. In autunno partiva per un lungo viaggio in Italia: la morte del signor Sain, marito della sua madrina e commissario generale al vettovagliamento per le truppe francesi stanziate in Italia, aveva lasciato libera una carica lucrosa che Cartesio avrebbe cercato - ma invano - di farsi assegnare.[35]

Secondo i biografi Cartesio, che aveva letto in collegio un testo allora famoso, Le pèlerin de Lorète del gesuita Louis Richeome, sarebbe andato a Loreto per visitare la leggendaria casa di Betlemme lì trasportata dagli angeli, poi a Roma, a Firenze, dove non incontrò Galileo,[36] e a Venezia. Rientrò in Francia attraverso il passo del Moncenisio ed ebbe occasione di assistere alla caduta di valanghe, un fenomeno che tratterà nel libro sulle Météores.[37] Giunse a Parigi nel maggio del 1625. Nel complesso non ricavò una buona impressione della penisola e dei suoi abitanti: «la calura del giorno è insopportabile, il fresco della sera malsano e l'oscurità della notte copre furti e omicidi».[38]

Da questo momento Cartesio adottò uno stile di vita che osserverà per sempre: avendo rinunciato alla carriera militare e a occupare qualsiasi magistratura, vivrà dei proventi dei suoi possedimenti terrieri, che gli assicuravano una condizione libera dal bisogno e gli permettevano di dedicarsi ai suoi studi. Si mantenne in corrispondenza con Beeckman ed entrò in relazione con i matematici Jean Baptiste Morin e Florimond Debeaune, con il Mydorge e con i letterati Jean de Silhon, Jacques de Sérisay, Guez de Balzac e col padre Mersenne, già autore di un trattato sull'ottica, la cui sollecitazione può averlo indotto a studiarne i problemi, giungendo a determinare la legge della costanza del rapporto dei seni degli angoli di incidenza e di rifrazione.[39] successivamente ma indipendentemente da Willebrord Snell.[40]

Nel novembre del 1627 fu invitato nella casa del nunzio pontificio Gianfrancesco Guidi di Bagno ad una riunione di scienziati e filosofi. Lì, presenti anche il cardinale Bérulle e il Mersenne, si trovò a confutare le teorie filosofiche di un certo Chandoux attraverso l'esposizione del suo «metodo naturale» fondato sulle Regulae ad directionem ingenii che Cartesio stava elaborando.[41]

Per lavorarci con maggiore tranquillità, partì per la Bretagna e poi si trasferì in una sua proprietà nel Poitou: le Regulae sono costituite da 21 proposizioni, 18 delle quali,le prime, commentate. In realtà il testo è stato lasciato incompiuto, in vista dello sviluppo organico che del tema del metodo della conoscenza Cartesio darà nel successivo Discours.[42]

L'intenzione è quella di orientare gli studi in modo che «la mente giunga a giudizi solidi e veri su tutto ciò che le si presenta».[43] Il metodo è «la via che la mente umana deve seguire per raggiungere la verità»:[44] esso consiste nell'ordinare e disporre gli oggetti sui quali s'indirizza la mente per giungere alla verità. Le proposizioni involute e oscure devono essere ridotte a proposizioni più semplici e poi, partendo dall'intuizione di queste ultime, progredire alla conoscenza di quelle più complesse.[45] Le proposizioni semplici, comprese intuitivamente e senza ricorrere a dimostrazioni per la loro evidenza, sono equivalenti ai postulati e agli assiomi matematici e costituiscono i principi della conoscenza.

In Olanda[modifica | modifica sorgente]

L'Università di Franeker

Fu di nuovo a Parigi nell'aprile del 1628: in questo periodo sembra che abbia scritto un trattatello sulla scherma, andato perduto: L'art de l'escrime. In ottobre andò a Dordrecht, in Olanda, a trovare l'amico Beeckman: in questa occasione deve aver maturato la decisione di trasferirsi nei Paesi Bassi. Dopo un ritorno a Parigi nell'inverno del 1628, nel marzo del 1629 ripartì per l'Olanda: si stabilì a Franeker, ove il 26 aprile si iscrisse all'Università per frequentare i corsi di filosofia. Probabilmente scelse quell'università perché vi insegnava il matematico Adrien Metius, fratello di quel Jacques Metius che a giudizio di Cartesio aveva inventato il cannocchiale.[46]

Continuò a lavorare sui problemi dell'ottica e in agosto fu messo a conoscenza dall'amico professore di filosofia Henricus Reneri dell'osservazione del fenomeno ottico-astronomico dei pareli, effettuata il 20 marzo a Frascati dall'astronomo gesuita Cristoph Scheiner. Quel fenomeno era già noto e Pierre Gassendi ne diede il 14 luglio una descrizione che verrà ripresa da Cartesio nelle Méteores: sono circoli bianchi che «invece di avere al loro centro un astro, attraversano ordinariamente il centro del Sole o della Luna e risultano paralleli o quasi all'orizzonte».[47]

Dal 1630 cominciò a lavorare al Le Monde ou traité de la lumière che avrebbe dovuto rappresentare l'esposizione della propria filosofia naturale, ma la notizia della condanna, nel 1633, del Galilei e della messa all'Indice del Dialogo sopra i due massimi sistemi lo dissuasero dal completare e pubblicare l'opera che in più parti sposava le tesi di Copernico condannate dalla Chiesa.[48] Dopo un'edizione parziale postuma in traduzione latina nel 1662 a Leida, il trattato fu pubblicato nella versione originale francese a Parigi nel 1664 in due parti separate, con il titolo, rispettivamente, di Le Monde ou le traité de la lumière et des autres principaux objects des sens e di L'Homme; finalmente, nel 1667, l'opera fu pubblicata integralmente a Parigi insieme con il frammento La formation du foetus.

Cartesio allo scrittoio

Nelle Regulae Cartesio aveva individuato nella «matematica universale» la «scienza dell'ordine», ossia quella scienza che, stabilendo la disposizione nella quale tutte le varie conoscenze vanno disposte, essendo tra di loro legate da comuni principi, è la scienza alla quale tutte le altre fanno capo. Dopo la matematica, ne Il Mondo Cartesio affronta il problema della fisica, individuando il principio al quale tutti i fenomeni fisici obbediscono. Tale principio è la conoscenza «chiara e distinta» degli elementi semplici che costituiscono i corpi. I corpi sono materia dotata di movimento che occupa uno spazio determinato e gli elementi primi della materia sono la terra, l'aria e il fuoco.

La materia è dunque esprimibile quantitativamente con «il movimento, la grandezza, la figura e la disposizione delle parti», e solo da questi deve derivare la spiegazione delle sue qualità. Le leggi della natura obbediscono a tre principi: «ogni parte della materia conserva sempre lo stesso stato finché le altre non la costringono a cambiarlo», che è il principio d'inerzia[49]; «quando un corpo spinge un altro corpo, non gli trasmette né sottrae movimento senza perderne o acquistarne una quantità eguale», e «quando un corpo è in movimento, ciascuna delle sue parti, presa separatamente, tende sempre a continuare il proprio movimento in linea retta».

Nel 1635 diventò padre con la nascita della figlia Francine (1635-1640)[50] battezzata il 7 agosto dello stesso anno, avuta da una domestica di nome Helena Jansdr vander Strom che aveva avuto come amante per alcuni anni senza mai sposarla neppure dopo questa nascita. Cartesio però riconobbe Francine, che morì a soli 5 anni, come sua figlia.[51]

Nel 1637 pubblicò il Discorso sul metodo e i saggi su Diottrica, Geometria e Meteore. Nel 1641 diede alle stampe la prima edizione delle Meditazioni metafisiche corredate dalle prime sei Obiezioni e risposte. L'anno successivo (1642) con la seconda edizione delle Meditazioni pubblicò le settime Obiezioni e risposte.

Nel 1643 la filosofia cartesiana venne condannata dall'Università di Utrecht, contemporaneamente Cartesio cominciò una lunga corrispondenza con Elisabetta principessa di Boemia. Nel 1644 compose i Principia philosophiae e compì un viaggio in Francia. Nel 1647 la corona di Francia gli riconobbe una pensione. L'anno successivo da una lunga conversazione con Frans Burman nacque il libro omonimo.

Precettore di filosofia in Svezia e morte[modifica | modifica sorgente]

Nel 1649 si trasferì a Stoccolma accettando l'invito della regina Cristina di Svezia, sua discepola, desiderosa di approfondire i contenuti della sua filosofia. Quell'anno dedicò alla principessa Elisabetta il trattato Le passioni dell'anima. L'inverno svedese e gli orari ai quali Cristina lo costringeva a uscire di casa per impartirle le lezioni - prime ore del mattino, quando il freddo era più pungente - ne minarono il fisico. Secondo il racconto tradizionale e l'ipotesi più accreditata, Cartesio morì l'11 febbraio 1650 per una sopraggiunta polmonite.[52] La condanna della Chiesa cattolica nei confronti del pensiero cartesiano non tardò a venire, con la messa all'Indice nel 1663 delle sue opere (poste nell'Index con la clausola attenuante suspendendos esse, donec corrigantur).[53][54]

Le ossa di Cartesio[modifica | modifica sorgente]

La tomba di Cartesio all'interno di Saint-Germain-des-Prés

Dopo la morte il corpo di Cartesio venne tumulato in un piccolo cimitero cattolico a nord di Stoccolma dove rimase sino al 1666 quando i resti vennero riesumati per essere portati a Parigi e inumati nella chiesa di Sainte Geneviève-du-Mont[55] dove rimase sino al 26 febbraio 1819 quando la salma fu nuovamente trasferita e inumata tra altre due lapidi tombali, quelle di Jean Mabillon e di Bernard de Montfaucon, nella chiesa di Saint-Germain-des-Prés: «alla presenza dei rappresentanti dell'Accademia delle scienze, la salma fu ancora riesumata. Aprendo la bara, i presenti si resero conto che qualcosa non andava, in quanto allo scheletro del filosofo mancava misteriosamente il cranio.»[56]

Si scoprì che gli svedesi ne avevano asportato la testa, che ricomparve a Stoccolma a un'asta, ove il cranio fu acquistato e donato alla Francia. Sul teschio, privo della mandibola e della parte inferiore, compaiono le firme dei suoi proprietari dalla fine del Seicento al momento della vendita. Secondo l'uso del tempo gli intellettuali tenevano sulla scrivania un teschio, meglio se di un illustre personaggio, a memento della morte comune e inevitabile. Il teschio, attribuito a Cartesio sia per l'età sia per le ricostruzioni fatte in base ai ritratti del filosofo, continuò a rimanere separato dal resto del corpo ed esposto al Musée de l'Homme.[57]

Nel 1801 in suo onore la città natale fu ribattezzata La Haye-Descartes e nel 1966, dopo la sua fusione con il comune di Balesmes, Descartes.

Un'altra ipotesi sulla morte di Cartesio[modifica | modifica sorgente]

Il filosofo tedesco Theodor Ebert (1939), dell'Università di Erlangen,[58] nell'opera La misteriosa morte di René Descartes è giunto alla conclusione che Cartesio morì non per una polmonite, ma per un avvelenamento da arsenico. Ebert ha scoperto una nota del medico di Cartesio dove si descrivono le condizioni del filosofo, consistenti in «perdurante singhiozzo, espettorazione di colore nero, respirazione irregolare» sintomi riportabili ad avvelenamento da arsenico. Nello stessa opera si racconta di come Cartesio, forse sospettando un avvelenamento, poco prima di morire chiedesse un infuso di vino e tabacco, bevanda che serviva a vomitare.

Nel 1996 la tesi dell'avvelenamento era stata avanzata anche da autori come Eike Pies[59] che l'attribuiva all'iniziativa di un monaco cappellano presso l'ambasciata francese a Stoccolma incaricato di operare come "missionario del nord" per convertire la regina svedese al cattolicesimo.

Nel 1980 Pies ebbe modo di leggere nell'archivio dell'università di Leiden, Paesi Bassi, una lettera del medico della regina Cristina, che descriveva a un amico dottore i sintomi del moribondo Cartesio, consistenti in «emorragia allo stomaco, vomito nero, tutte cose che non hanno niente a che fare con la polmonite».[60]

Gli studi, ritenuti attendibili da esperti della materia come Rolf Puster, ritengono che Cartesio sia stato avvelenato con un'ostia della comunione intrisa d'arsenico dal padre agostiniano, François Viogué, frate francese inviato dal Papa Innocenzo X a Stoccolma come missionario apostolico per convertire al cattolicesimo la regina Cristina di Svezia, come poi avvenne nel 1654.[61][62]

La ipotesi di assassinio ad opera del fanatico padre Viogué si baserebbe sul fatto che questi vedeva nell'insegnamento cartesiano un ideale razionalista che avrebbe portato la regina Cristina ad un cattolicesimo diverso da quello professato dal padre agostiniano.[63] Tale affermazione, però, sembra in parte contrastare con quanto affermato della regina di Svezia, la quale, in una testimonianza inserita nell'introduzione all'edizione postuma parigina delle Méditations métaphysiques, elogia il filosofo scrivendo che « [M. Des-Cartes] a beaucoup contribué a nostre glorieuse conversion; et que la providence de Dieu s'est servie de luy [...] pour nous en donner les premières lumières; ensorte que sa grâce et sa misericorde acheverent apres à nous faire embrasser les veritez de la Religion Catholique Apostolique et Romaine ».[64]

La maggior parte degli studiosi si mostra assai scettica riguardo all'ipotesi di avvelenamento, considerando ben più attendibile quella tradizionale fornita dal biografo Baillet[60], tanto da ritenere che « non sono assolutamente da seguirsi le voci secondo le quali il filosofo sarebbe morto per avvelenamento, vittima di una congiura di corte: non sembrano verosimili e nessuno ha mai avanzato prove plausibili ».[65]

Per di più gli amici che nelle ultime ore assistettero Cartesio osservarono un sintomo non riconducibile all'avvelenamento da arsenico: la febbre alta. La stessa alterazione febbrile Cartesio aveva avuto modo di riscontrare nell'ambasciatore Nopeleen e nell'amico Chaunut appena guarito da una febbre alta. A rendere poco convincente l'avvelenamento sarebbe stato il fatto che lo stesso presunto avvelenatore, Vioguè, confessò e confortò Cartesio sul letto di morte amministrandogli l'estrema unzione.[66]

Pensiero di Cartesio[modifica | modifica sorgente]

Cenni sulla filosofia cartesiana

La finalità della filosofia di Cartesio è la ricerca della verità attraverso la filosofia, intesa come uno strumento di miglioramento della vita dell'uomo: perseguendo questa via il filosofo intende ricostruire l'edificio del sapere, fondare la scienza.

Cartesio ritiene che criterio basilare della verità sia l'evidenza, ciò che appare semplicemente e indiscutibilmente certo, mediante l'intuito. Il problema nasce nell'individuazione dell'evidenza, che si traduce nella ricerca di ciò che non può essere soggetto al dubbio. Pertanto, dacché la realtà tangibile può essere ingannevole in quanto soggetta alla percezione sensibile (dubbio metodico) e al contempo anche la matematica e la geometria (discipline che esulano dal mondo sensibile) si rivelano fasulle nel momento in cui si ammette la possibilità che un'entità superiore (colui che Cartesio soprannomina genio maligno) faccia apparire come reale ciò che non lo è (dubbio iperbolico), l'unica certezza che resta all'uomo è che, per lo meno, dubitando, l'uomo è sicuro di esistere. L'uomo riscopre la sua esistenza nell'esercizio del dubbio. Cogito ergo sum: dal momento che è propria dell'uomo la facoltà di dubitare, l'uomo esiste.

Partendo dalla certezza di sé, Cartesio arriva, formulando due prove ontologiche e una prova cosmologica, alla certezza dell'esistenza di Dio. Dio, che nella concezione cartesiana è bene e pertanto non può ingannare la sua creazione (l'uomo), si rende garante del metodo, permettendo al filosofo di procedere alla creazione dell'edificio del sapere. Le maggiori critiche ricevute da Cartesio furono apportate da Pascal (che gli rimprovera di sfruttare Dio per dare un tocco al mondo) e da alcuni suoi avversatori contemporanei (tra cui il filosofo inglese Hobbes e il teologo Antoine Arnauld), che lo accusarono di essere caduto in una trappola solipsistica (assimilabile a un circolo vizioso): Cartesio teorizza Dio per garantirsi quei criteri di verità che gli sono serviti a dimostrare l'esistenza di Dio.[67]

« Volendo seriamente ricercare la verità delle cose, non si deve scegliere una scienza particolare, infatti esse sono tutte connesse tra loro e dipendenti l'una dall'altra. Si deve piuttosto pensare soltanto ad aumentare il lume naturale della ragione, non per risolvere questa o quella difficoltà di scuola, ma perché in ogni circostanza della vita l'intelletto indichi alla volontà ciò che si debba scegliere; e ben presto ci si meraviglierà di aver fatto progressi di gran lunga maggiori di coloro che si interessano alle cose particolari e di aver ottenuto non soltanto le stesse cose da altri desiderate, ma anche più profonde di quanto essi stessi possano attendersi »
(Cartesio dal "Discorso sul metodo")

Cartesio e il metodo[modifica | modifica sorgente]

Exquisite-kfind.png Per approfondire, vedi Discorso sul metodo e Cogito ergo sum.
« Si giunge così alla filosofia moderna in senso stretto, che inizia con Cartesius. Qui possiamo dire d'essere a casa e, come il marinaio dopo un lungo errare, possiamo infine gridare “Terra!”. Cartesius segna un nuovo inizio in tutti i campi. Il pensare, il filosofare, il pensiero e la cultura moderna della ragione cominciano con lui. »
(Georg Wilhelm Friedrich Hegel, Lezioni sulla storia della filosofia, Laterza, Roma-Bari 2009, p. 468.)

Ritenuto il primo pensatore moderno che ha fornito un quadro filosofico di riferimento per la scienza moderna all'inizio del suo sviluppo, Cartesio ha cercato di individuare i principi fondamentali che possono essere conosciuti con assoluta certezza. Per farlo si è servito di un metodo chiamato scetticismo metodologico: rifiutare come falsa ogni idea che può essere revocata in dubbio.

La conoscenza sensibile è la prima a essere messa in mora: è bene diffidare di chi ci ha già ingannato, potrà farlo ancora. Addirittura nel sonno capita di rappresentarsi cose che non esistono come se fossero vere. Perciò non bisogna credere nei sensi.

La conoscenza matematica solo apparentemente può sfuggire al metodo del dubbio metodico messo in atto da Cartesio. Infatti, benché sembri che non ci possa essere nulla di più sicuro e di più certo, non si può neppure escludere che un "genio maligno", supremamente malvagio e potente, si diverta a ingannarci ogni volta che effettuiamo un calcolo matematico.

Cartesio, per la sua personale esperienza della verità, ritiene che i pensieri di cui possiamo essere certi sono evidenze primarie alla ragione. Evidente è l'idea chiara e distinta, che si manifesta all'intuito nella sua elementare semplicità e certezza, senza bisogno di dimostrazione. Ne sono esempi i teoremi di geometria euclidea, che sono dedotti in base alla loro stessa evidenza, ma nello stesso tempo verificabili singolarmente in modo analitico, mediante vari passaggi[68].

Il ragionamento non serve a dimostrare le idee evidenti, ma semplicemente a impararle e memorizzarle; i collegamenti hanno la funzione di aiutare la nostra memoria. Kant rileverà che questo non solo è un metodo opportuno, ma che è l'unico possibile, che le coscienze si formano intorno a un "io penso" che può apprendere soltanto conoscenze che derivino da un unico principio.

Cartesio afferma anche che ognuno ha il suo metodo e che il suo è uno dei metodi possibili. L'importante è darsi un metodo cui sottoporre tutte le verità e da seguire come regola per tutta la vita; il metodo cartesiano finisce con l'essere un imperativo categorico il cui contenuto metodico varia a seconda delle circostanze, ma anche della persona (cosa che l'imperativo categorico non ammette). Il metodo cartesiano quindi non è altro che un criterio di orientamento unico e semplice che all'interno di ogni campo teoretico e pratico aiuti l'uomo, e che abbia come ultimo fine il vantaggio dell'uomo nel mondo.

Cartesio e il dubbio[modifica | modifica sorgente]

Exquisite-kfind.png Per approfondire, vedi Dal dubbio iperbolico alla certezza assoluta.
Meditationes.
(LA)
« Dubium sapientiae initium »
(IT)
« Il dubbio è l'origine della saggezza »
(René Descartes, Meditationes de prima philosophia)

Che cosa possiamo sperare di conoscere con certezza? Proprio quando sembra impossibile individuare qualcosa che possa essere conosciuto con evidente certezza, Cartesio si rende conto che qualunque cosa possa fare quel genio maligno di cui ha ipotizzato l'esistenza nel corso della messa in discussione di ogni certezza, questi non potrà mai far sì che io, che dubito di essere ingannato da lui, non esista: la sua azione dell'ingannare si rivolge ad un esistente che subisce l'inganno e che dubita di essere ingannato e, se dubita, pensa. Questo è il principio (meglio conosciuto nella formula del cogito ergo sum, "penso, quindi sono", che compare nel Discorso sul metodo) su cui ricostruire l'edificio della conoscenza.

Dal momento che dobbiamo rifiutare l'insegnamento dei sensi che ci rappresentano come dotati di un corpo, Descartes conclude di essere una sostanza pensante.

La contrapposizione fra res cogitans[69] e res extensa[70] avrà notevoli risvolti antropologici.[71]

Il pensiero costituisce la sua essenza nella misura in cui esso è ciò di cui non può più dubitare. La costruzione del sapere avviene attraverso il metodo della deduzione mentre i sensi sono privati di ogni dignità conoscitiva.

Exquisite-kfind.png Per approfondire, vedi Spinoza e Cartesio: il dibattito metafisico.

Il grande contributo di Cartesio alla filosofia moderna è dato dall'aver posto nel rapporto tra soggetto e oggetto l'Idea: non si conoscono direttamente le cose, ma le nostre idee sulle cose. Pertanto il soggetto non può conoscere direttamente l'oggetto; l'esistenza delle cose e il loro modo di apparirci diventano un problema gnoseologico che Cartesio pone ma solo Kant risolverà in modo convincente.

Il composto anima-corpo[modifica | modifica sorgente]

De Homine.

Qual è il rapporto che l'io in quanto pensiero e il corpo in quanto estensione intrattengono tra di loro?

Cartesio anzitutto esclude che il pensiero sia nel corpo «come un nocchiero nella barca»; questa era l'immagine platonica per illustrare il rapporto anima-corpo, che lasciava intatte e separate le due sostanze.

A tale possibilità Cartesio obietta che le sensazioni che abbiamo, fame, sete, dolore...ecc., ci segnalano un rapporto diretto col corpo, laddove se non si realizzasse un'unità, l'intelletto non proverebbe quei pensieri di sensazione, ma essi gli riuscirebbero in qualche modo estranei.
C'è un ulteriore elemento che ci dà la misura dell'unione intrinseca dell'intelletto col corpo,e cioè che i corpi esterni a noi intrattengono con noi rapporti che non sono percepiti come inerenti esclusivamente alla nostra corporeità, ma come benefici o dannosi a tutti noi stessi.

Anima e corpo sono dunque «mescolati», come attestano le sensazioni sia interne sia esterne; ma non al punto che non sia possibile distinguere alcune operazioni «che sono di pertinenza della sola anima» e altre «che appartengono al solo corpo».

All'anima compete la conoscenza della verità, al corpo le sensazioni «che ci sono date dalla natura propriamente solo per indicare all'anima quali cose siano di beneficio, quali di danno, a quel composto di cui essa è una parte, e ciò finché non sono ben chiare e distinte».

Il corpo dà dunque all'anima le indicazioni necessarie perché essa operi per la sopravvivenza del composto, ma tali indicazioni sono oscure e confuse,e la luce intellettuale deve, per conoscere la verità su di esse, provvedere a chiarirle.

Questa spiegazione puramente funzionale delle sensazioni urta però con due obiezioni che Cartesio si pone immediatamente.

Le sensazioni nocive[modifica | modifica sorgente]

Il corpo però a volte ha sensazioni nocive per il composto, in ciò venendo meno alla sua funzione, ad esempio «quando qualcuno, ingannato dal sapore gradevole di un cibo, ingerisce il veleno che vi è nascosto».

Questa obiezione è facilmente superabile, in quanto al più in questo caso si può accusare la sensazione di ignorare che in quel cibo c'è del veleno, ma ben sappiamo che l'uomo è «una cosa limitata», e un caso del genere si spiega considerando che la sensazione ha una capacità informativa limitata.

Più insidiosa è l'altra obiezione, che osserva che ci sono sensazioni che direttamente operano a danno del composto; ad esempio «quando coloro che sono ammalati desiderano una bevanda o del cibo, che poco dopo sarà loro nocivo» come l'idropico che prova una sensazione di sete, soddisfacendo la quale sicuramente si danneggerà.

Per rispondere all'obiezione Cartesio tenta dapprima la strada della spiegazione meccanicistica del corpo, cui addossare la responsabilità dell'errore. Istituisce il paragone tra corpo e orologio e osserva che se si considera il corpo come una macchina di pure parti materiali, si può pensare alla malattia come a una rottura della macchina; ma anche con questo modello non si è risposto all'obiezione, ammette Cartesio, perché le leggi di natura regolano anche un orologio che funziona male, mentre nel caso dell'idropico vengono meno. Se la malattia è da paragonarsi a un guasto dell'orologio che ne produce il malfunzionamento, resta da spiegare come mai vi si aggiunga un'attività direttamente contraria alla sopravvivenza del composto, e cioè il desiderio di bere.

Potremmo aggiungere, è come se l'orologio, oltre a funzionare male, si mettesse a danneggiare i suoi ingranaggi o attivasse un pulsante di autodistruzione. In tale caso di autodanneggiamento la sensazione di sete dell'idropico è «un vero errore di natura», in quanto opera in contrasto con la sopravvivenza del composto, al cui fine le sensazioni sono istituite.

L'"uomo macchina" e gli animali[modifica | modifica sorgente]

Il cogito, come capacità di autocoscienza appartiene solo agli uomini dotati di un corpo che funziona come una macchina: « [...] incomparabilmente meglio ordinata e ha in sé movimenti più meravigliosi di qualsiasi altra tra quelle che gli uomini possono inventare [...] » ; gli animali invece privi di coscienza sono semplici macchine. Solo l'uomo ragiona e parla mentre gli animali anche quando parlano in modo simile al nostro interloquire, come ad esempio i pappagalli, non fanno che ripetere dei suoni che sentono, non elaborano razionalmente dei discorsi. L'incapacità di parlare degli animali non dipende dal fatto che essi non abbiano gli organi appositi per farlo, come ad esempio le corde vocali, ma dalla loro incapacità di ragionare. Tanto è vero che anche uomini privi degli strumenti per parlare sono superiori agli animali parlanti perché con la loro ragione inventano segni che permettono loro di comunicare coscientemente, pur essendo muti e sordi.

Gli animali quindi sono privi di ragione e di coscienza e non provano dolore; anche quando sembrano manifestare sofferenza, in realtà reagiscono meccanicamente a una stimolazione materiale come quando toccando una molla dell'orologio le sue lancette si muovono.[72]

Teoria questa confutata da altri successivi filosofi, che la reputarono giustificatrice di abusi e crudeltà verso gli animali.

Exquisite-kfind.png Per approfondire, vedi Le origini dell'idea di diritto animale.

Cartesio e le idee[modifica | modifica sorgente]

Se io sono sostanza pensante, il mio pensiero deve essere caratterizzato da un contenuto, ovvero deve configurarsi come idea.

Cartesio distingue tre tipologie di idee:

  1. Idee avventizie: derivano, tramite la sensibilità, da oggetti esterni e sono indipendenti dall'uomo;
  2. Idee fittizie (dal latino fingo, fingo, immagino): da noi inventate (l'idea dell'ippogrifo o quella della chimera);
  3. Idee innate: cioè nate con noi, sono come un patrimonio costitutivo della mente (l'idea matematica, l'idea di Dio).

Cartesio e Dio[modifica | modifica sorgente]

Exquisite-kfind.png Per approfondire, vedi Meditazioni metafisiche.
(LA)
« Ex nihilo nihil fit»
(IT)
« Nulla viene dal nulla. »
(Principia philosophiæ)

Con la sola forza del pensiero deduttivo Descartes propone una "prova ontologica" dell'esistenza di un Dio benevolo che ha dato all'uomo una mente e un corpo e che non può desiderare di ingannarlo. Le tre prove ontologiche, liberamente ispirate dalla Scolastica, di cui il filosofo si serve per postulare l'esistenza di Dio sono:

  • Siccome l'uomo ha in sé l'idea di Dio, che equivale all'idea della perfezione, ne deriva, seguendo il principio per cui la causa dev'essere eguale o maggiore all'effetto prodotto, che l'idea di Dio non può essere un prodotto della mente dell'uomo (il quale esercitando il dubbio dimostra la sua imperfezione), né dall'esterno (di cui potendo dubitarne si dimostra l'imperfezione) ma deve provenire necessariamente da un'entità perfetta, estranea all'idea di perfetto che l'uomo ha di lui: cioè Dio.
  • Siccome l'uomo è consapevole della sua imperfezione, non può essere stato lui l'artefice di quelle idee di perfezione che egli ha nella sua mente (onniscienza, onnipotenza, prescienza ecc.) altrimenti alla creazione si sarebbe dato codeste prerogative. Motivo per cui deve esistere un'entità che gode di quelle qualità e che abbia dall'esterno creato l'uomo: cioè Dio.
  • Riprendendo la prova elaborata da sant'Anselmo d'Aosta, Cartesio afferma che l'esistenza è già implicita nel concetto stesso di perfezione: esiste un'entità superiore in quanto espressione dell'idea che l'uomo ha di perfetto (la cosiddetta prova ontologica, come Kant definirà per sostenere l'impossibilità di far coincidere il piano logico con il piano ontologico): cioè Dio.

In questo modo, si può recuperare il rapporto con il mondo sensibile senza timore di essere ingannato. Riprendendo i tre anni di studi filosofici, Cartesio recupera l'idea della scolastica medioevale di un Dio-Bene che non può ingannare né me né i miei sensi, per cui è reale il mondo che abbiamo davanti. L'errore viene pertanto attribuito non alla dimensione intellettuale dell'uomo, ma alla volontà, che asseconda nel procedimento un principio non ancora chiarito.

Cartesio glottoteta[modifica | modifica sorgente]

Cartesio s'interessò anche del linguaggio. Ai suoi tempi si discuteva della possibilità dell'esistenza precostituita di una lingua che egli non ritiene possa sussistere "a priori" ma che invece possa essere costruita seguendo queste linee guida:

  • dovrebbe essere una lingua molto semplice da imparare nel giro di cinque, sei giorni e altrettanto facile a scrivere e a parlare;
  • tra le parole e i pensieri bisognerebbe instaurare la stessa relazione che c'è tra i numeri: un ordinamento preciso e meccanico che renda possibile una combinazione tramite sicure regole;
  • il primo passo da compiere per questa nuova lingua sarebbe quello di scomporre le idee complesse in idee semplici per poi effettuare ogni combinazione logica possibile.

In una lettera a padre Mersenne (20 novembre 1629) egli scriveva:

« Ritengo che questa lingua sia possibile, e che si possa trovare la scienza da cui farla derivare, così che per mezzo di questa dei contadini potrebbero giudicare della verità delle cose meglio di quanto non facciano oggi i filosofi. »

Cartesio pensava infine che si potesse tentare di stabilire i nomi primitivi delle azioni confrontando i verbi delle più diverse lingue e di dedurne le parole tramite degli affissi.

Questa sua idea fu poi ripresa da Leibniz, altro teorico di un linguaggio razionale, che abbinato a un calculus ratiocinator, avrebbe consentito la risoluzione meccanica di ogni problema.

Compendium musicae[modifica | modifica sorgente]

Exquisite-kfind.png Per approfondire, vedi Compendium musicae.

Il motivo per il quale Cartesio studia il suono è quello di comprendere in maniera più ampia come la musica riesca a commuoverci. Egli assume di poter comprendere tale proprietà dall'esame che fa delle caratteristiche fondamentali che rendono commovente il suono, ovvero la durata e il tono. Egli è dell'opinione che una semplice analisi matematica della consonanza possa fornirci le nozioni fondamentali sul modo di produrre il suono e quindi sulla natura della musica.

Cartesio sviluppa l'idea che la dolcezza delle consonanze dipende dalla frequenza con cui i battiti prodotti dai corpi sonori coincidono a intervalli regolari. Tuttavia Cartesio sostiene che la teoria matematica non può fornire un criterio di qualità estetica, criterio che dipende esclusivamente dai gusti dell'ascoltatore.

Opere[modifica | modifica sorgente]

Prima edizione de La Geometrie
  • Oeuvres de Descartes, a cura di Charles Adam e Paul Tannery, 12 voll., Paris, Editions du Cerf 1897-1913; nuova presentazione a cura di J. Beaude, P. Costabel, A. Gabbey et B. Rochot, Paris: Vrin 1964-1974 in 11 volumi.
    • Correspondence avril 1622 - février 1638 (vol. I)
    • Correspondence mars 1638 - décembre 1639 (vol. II)
    • Correspondence janvier 1640 - juin 1643 1638 (vol. III)
    • Correspondence juillet 1643 - avril 1647 (vol. IV)
    • Correspondence mai 1647 - février 1650 (vol. V)
    • Entretien avec Burman (vol. V, pp. 146–179)
    • Discours de la méthode. La Dioptrique. Les Meteores. La Geometrie. Specimina philosophiae (vol. VI)
    • Meditationes de prima philosophia. Objectiones, Responsiones. Epistola ad patrem Dinet (vol. VII)
    • Principia philosophiae (vol. VIII, t. 1)
    • Epistola ad Voetium. Lettre apologétique aux Magistrats d'Utrecht. Notae in Programma quoddam (vol. VIII, t. 2)
    • Méditations métaphysiques (vol. IX, t. 1)
    • Principes de la philosophie (vol. IX, t. 2)
    • Physico-mathematica. Compendium musicae. Regulae ad directionem ingenii. Recherche de la vérité. Supplément à la correspondence (vol. X)
    • Le monde. Description du corps humain. Passions de l'âme. Anatomica. Varia (vol. XI)
    • Charles Adam: Vie et oeuvres de Descartes. Étude historique (vol. XII, 1910, non più ristampato)
  • René Descartes, Oeuvres complètes (edizione in otto volumi a cura di J.-M. Beyssade e D. Kambouchner), Parigi: Gallimard, volumi pubblicati:
    • III. Discours de la Méthode et Essais, 2009.
    • VIII. Correspondance, 1 a cura di Jean-Robert Armogathe, 2013.
    • VIII. Correspondance, 2 a cura di Jean-Robert Armogathe, 2013.
  • René Descartes, Discours de la méthode pour bien conduire sa raison, et chercher la verité dans les sciences. Plus la Dioptrique. Les Meteores. Et la Geometrie. Qui sont des essais de cette Methode, Leyde, de l'Imprimerie de Ian Maire, 1637, rist. anast.: Lecce, Conte Editore, 1987
  • J.-R. Armogathe et G. Belgioioso, (eds.), René Descartes, Meditationes de prima philosophia, in quibus Dei existentia, et animae humanae a corpore distinctio, demonstrantur [...] Secunda editio septimis objectionibus antehac non visis aucta, Amstelodami, apud Ludovicum Elzevirium, 1642, rist. anast.: Lecce, Conte Editore, 1992
  • J.-R. Armogathe et G. Belgioioso, (ed.), René Descartes, Principia Philosophiae, Amstelodami, apud Ludovicum Elzevirium, 1644, rist. anast.: Lecce, Conte Editore, 1994
  • J.-R. Armogathe et G. Belgioioso, (ed.), Renati Descartes, Specimina Philosophiae seu: Dissertatio de Methodo recte regendae rationis, et veritatis in scientiis investigandae: Dioptrice, et Meteora. Ex gallico translata et ab auctore perlecta, variisque in locis emendata, Amstelodami, apud Ludovicum Elzevirium, 1644, rist. anast.: Lecce, Conteditore, 1998 ISBN 88-87143-18-8
  • J.-R. Armogathe et G. Belgioioso, (eds.), René Descartes, Passiones animae per Renatum Descartes: Gallice ab ipso conscriptae, nunc in exterorum gratiam Latina civitate donatae, Amstelodami, apud Ludovicum Elzevirium, 1650, rist. anast.: Lecce, Conte Editore, 1997 ISBN 88-87143-01-3
  • J.-R. Armogathe et G. Belgioioso, (eds.), Les passions de l'ame par René Des Cartes, Paris, chez Iean Guinard, 1650, rist. anast.: Lecce, Conte Editore, 1996 ISBN 88-85979-17-3
  • J.-R. Armogathe et G. Belgioioso, (eds.), Claude Clerselier. Lettres de Mr Descartes, 6 vols., Paris, Charles Angot, 1666-1667, rist. anast. dell'esemplare con note manoscritte della Bibliothèque dell'Institut: Lecce, Conte Editore, 2005 ISBN 88-6020-005-9
  • René Descartes, Discorso sul metodo e altri scritti, a cura di G. Belgioioso, Milano, Bompiani, 2009 ISBN 978-88-452-6122-0
  • René Descartes. Tutte le lettere 1619-1650, Milano, Bompiani, 2009 IIa ed., pp. 3104. Nuova edizione integrale dell'epistolario cartesiano con traduzione italiana a fronte, a cura di G. Belgioioso con la collaborazione di I. Agostini, M. Marrone, F. A. Meschini, M. Savini e J.-R. Armogathe ISBN 978-88-452-3422-4
  • René Descartes, Opere 1637-1649, Milano, Bompiani, 2009, pp. 2531. Edizione integrale con traduzione italiana a fronte, a cura di G. Belgioioso con la collaborazione di I. Agostini, M. Marrone, M. Savini ISBN 978-88-452-6332-3
  • René Descartes, Opere 1650-2009, Milano, Bompiani, 2009, pp. 1723. Edizione integrale con traduzione italiana a fronte, a cura di G. Belgioioso con la collaborazione di I. Agostini, M. Marrone, M. Savini ISBN 978-88-452-6333-0
  • René Descartes, Etude du bon sens, La recherche de la vérité et autres écrits de jeunesse (1616-1631) a cura di Vincent Carraud e Gilles Olivo, Parigi, Presses Universitaires de France, 2013

Traduzioni italiane[modifica | modifica sorgente]

Bibliografie[modifica | modifica sorgente]

  • Gregory Sebba, Bibliographia Cartesiana. A Critical Guide to the Descartes Literature, 1800-1960, The Hague, Martinus Nijhoff, 1964
  • J.-R. Armogathe et V. Carraud, Bibliographie cartésienne 1960-1996, avec la collaboration de M. Devaux et M. Savini, Lecce, Conte Editore, 2003

Biografie[modifica | modifica sorgente]

  • Adrien Baillet, Vie de Monsieur Descartes, 2 voll., Paris, Daniel Horthemels 1691
  • Adrien Baillet, La vie de mr. Des-Cartes. Réduite en abregé, Paris, G. de Luynes 1692; tr. it.: Vita di Monsieur Descartes, Milano, Adelphi, 1995 ISBN 88-459-1207-8
  • Isaac Beeckman, Journal tenu par Isaac Beeckman de 1604 à 1634, a cura di Cornelis de Waard, (1604-1619), 4 voll., Martinus Nijhoff, Den Haag, 1939-1953 (gli anni 1619-1628 contengono molti riferimenti a Descartes ripresi nell'edizione Adam Tannery vol. XI, AT XI, pp. 3–118, pp. 505–538, 539-542)
  • Pierre Borel, Vitae Renati Cartesii summi philosophi Compendium, Parisiis, Ioannem Billaine, 1652
  • Geneviève Rodis-Lewis Cartesio. Una biografia Roma: Editori Riuniti, 1997
  • Eric Temple Bell, Men of Mathematics, New York, Simon and Schuster, 1937, 592 pp.; tr. it.: I grandi matematici, Milano, Rizzoli, 1997

Studi[modifica | modifica sorgente]

  • John Cottingham, Cartesio, Bologna, Il Mulino, 1996
  • Giovanni Crapulli, Introduzione a Descartes, Bari, Laterza, 1995
  • Stefano Di Bella, Le Meditazioni metafisiche di Cartesio : introduzione alla lettura, Firenze, La Nuova Italia, 1997
  • Reinhard Lauth, Descartes : la concezione del sistema della filosofia, Milano, Guerini e Associati, 2000
  • Jean-Luc Marion, Il prisma metafisico di Descartes : costituzione e limiti dell'onto-teo-logia nel pensiero cartesiano, Milano, Guerini e Associati, 1998
  • Emanuela Scribano, Guida alla lettura delle Meditazioni metafisiche di Descartes, Bari, Laterza, 1997
  • William R. Shea, La magia dei numeri e del moto. René Descartes e la scienza del Seicento, Torino, Bollati Boringhieri, 1994 ISBN 88-339-0885-2
  • Maurizio Valsania, Lettura delle Meditazioni metafisiche di Descartes, Torino, UTET, 1998

Film[modifica | modifica sorgente]

Cartesio nella cultura di massa[modifica | modifica sorgente]

  • Cartesio è protagonista del romanzo giallo L'enigma di Cartesio di Frédéric Serror e Herio Saboga.
  • Dubbi sulla morte di Cartesio in un giallo-storico di Daniele Bondi, Il caso Cartesio. Gialli Rusconi
  • Tre importanti personalità femminili nella vita di Cartesio nel romanzo storico di Teresa Moure, Le tre donne di Cartesio, Casa editrice Corbaccio

Note[modifica | modifica sorgente]

  1. ^ Renato Cartesio, Discorso sul metodo (1637), Mondadori, Milano 1993, pp. 34, 90 e nota 6. L'altra formulazione più nota del principio cartesiano è in Principia philosophiae (1644), I, IV e X passim (ove si dice: «... . questa conoscenza, io penso, dunque sono, è la prima e la più certa che si presenta a chi s'appresti a filosofare secondo un certo ordine»).
  2. ^ Altra grafia diffusa soprattutto ai tempi dell'autore: René Des-Cartes.
  3. ^ In senso ironico Giambattista Vico nella sua polemica nei confronti dei cartesiani chiama il filosofo francese Renato Delle Carte (cfr. ad esempio Wikisource, Vita di Giambattista Vico scritta da se medesimo). Il nome fu ripreso da alcuni autori italiani seicenteschi come ad esempio Pietro Giannone (1676-1748) in Storia civile del Regno di Napoli, Tomo XI, Tipografia Elvetica, 1841, p.117, e dall'anticartesiano Matteo Giorgi (1650-1728) in Disputa di Matteo Giorgi intorno a principj di Renato delle Carte...
  4. ^ Rolando Zucchini, Gli asintoti: Storia, geometria e analisi delle rette tangenti all’infinito, Mnamon, 2014. cap.II
  5. ^ Gustavo Bontadini, Studi di filosofia moderna, Vita e Pensiero, 1996, p.395 e sgg.
  6. ^ Un villaggio ribattezzato in suo onore La Haye-Descartes nell'Ottocento e semplicemente Descartes nel 1967.
  7. ^ Adrien Baillet, Vie de Monsieur Descartes, I, p. 4
  8. ^ Oeuvres, XII, p. 2
  9. ^ Lettera di Cartesio alla principessa Elisabeth von der Pfalz, giugno 1645, in Oeuvres IV, p. 221
  10. ^ Data la salute precaria, i familiari preferirono tenere a casa René durante l'inverno. Non vi è accordo tra i primi biografi circa l'anno nel quale Cartesio sarebbe entrato a La Flèche, ma poiché è certo che uscì nel settembre del 1615 ed essendo di nove anni la durata dell'intero corso di studi, è naturale supporre che vi sia entrato nel 1607: (cfr. Geneviève Rodis-Lewis, Cartesio, 1997, pp. 23-25.) Cartesio scrisse di aver passato a La Fléche «quasi nove anni» (Cfr. Lettera a Julien Hayneuve, 22 luglio 1640.)
  11. ^ Enciclopedia Treccani alla voce "Mersenne Marin"
  12. ^ Allora in Francia la matematica era insegnata solo nelle Università: furono proprio i gesuiti a introdurne lo studio nelle loro scuole: cfr. Rodis-Lewis, cit., p. 23.
  13. ^ Rispettivamente la Introductio in dialecticam Aristotelis e le Institutiones dialecticarum.
  14. ^ I testi di riferimento erano la Fisica, il De coelo e il De generatione et corruptione animalium di Aristotele.
  15. ^ Con lo studio della Metafisica e del De anima.
  16. ^ Oeuvres, VI p. 4
  17. ^ «Per me possemne invenire, non lecto autore»: Oeuvres, X, p. 214
  18. ^ Enzo Biagi, Quante storie, Milano, Rizzoli, 1989, p. 21, ISBN 88-17-85322-4.
    «Anche i difetti vengono valorizzati, e nessuno si stupirebbe più per la predilezione del filosofo Cartesio, che si innamorava a ogni incontro con una dama strabica, perché da piccolo aveva avuto una dolcissima zia con un occhio non perfetto.».
  19. ^ Lettera di Cartesio alla principessa Elisabeth von der Pfalz, cit., p. 221
  20. ^ Pubblicata in Bulletin cartésien, «Archives de philosophie», 15, 1987
  21. ^ Journal tenu par Isaac Beeckman de 1604 à 1634, a cura di Cornelis de Waard, I, p. 262.
  22. ^ Quell'agenda è andata perduta, ma ci è conservata una copia parziale fatta da Leibniz.
  23. ^ Journal, cit., I, 269.
  24. ^ Oeuvres, X, p. 95.
  25. ^ Oeuvres, X, pp. 156-158
  26. ^ A. M. Magri, G. C. Zuccotti, Enciclopedia di direzione e consulenza aziendale, Piccin ed., 1989, p.1652
  27. ^ Oeuvres, VI, p. 10.
  28. ^ Oeuvres, VI, p. 13
  29. ^ Oeuvres, VI, pp. 18-19
  30. ^ «X novembris 1619, cum plenus forem enthusiasmo, et mirabilis scientiae fundamenta reperirem», Oeuvres, X, p. 179
  31. ^ Oeuvres, X, p. 180.
  32. ^ Oeuvres, X, pp. 360-361.
  33. ^ Oeuvres, VI, 28.
  34. ^ Oeuvres, X, pp. 193-196; Rodis-Lewis, cit., p. 54.
  35. ^ Così Adrien Baillet in Oeuvres, I, p. 3.
  36. ^ Contrariamente a quanto affermato dal biografo Borel: nella lettera a Mersenne dell'11 ottobre 1638 Cartesio scrive di non aver visto Galileo.
  37. ^ Oeuvres, VI, pp. 316-321
  38. ^ Lettera a Guez de Balzac, 5 maggio 1631, in Oeuvres, I, p. 204.
  39. ^ Le accuse di plagio, rivolte dopo la sua morte da Vossius, Huygens e Leibniz non hanno fondamento: cfr. Paul Mathias Kramer, Descartes und das Brechungsgesetz des Lichtes, in «Abhandlungen zur Geschichte der Mathematik», 1882, 4.
  40. ^ La legge fu anche il risultato dei suoi studi sulle coniche: cfr. Gaston Milhaud, Descartes savant, pp. 103-123.
  41. ^ Oeuvres, I, p. 213: lettera a Etienne de Villebressieu, 1631.
  42. ^ Infatti Cartesio non pubblicò le Regulae, che furono pubblicate postume in traduzione olandese nel 1684, mentre l'edizione latina, compresa negli Opuscula posthuma, è del 1701. Il manoscritto originale è andato perduto.
  43. ^ I regola: «Studiorum finis esse debet ingenii directio ad solida et vera, de iis omnibus quae occurrunt, proferenda judicia».
  44. ^ IV regola: «Necessaria est methodus ad veritatem investigandam».
  45. ^ V regola: «Tota methodus consistit in ordine et dispositione eorum, ad quae mentis acies est convertenda, ut aliquam veritatem inveniamus. Atqui hanc exacte servabimus, si propositiones involutas et obscuras ad simpliciores gradatim reducamus, et deinde ex omnium simplicissimarum intuitu ad aliarum omnium cognitionem per eosdem gradus ascendere tentemus».
  46. ^ Oeuvres, VI, p. 82.
  47. ^ Oeuvres, VI, p. 354
  48. ^ Come scrive nel febbraio del 1634 a Mersenne, dopo aver saputo della condanna di Galileo, Cartesio dichiara la sua «intera obbedienza alla Chiesa» che lo obbliga a «sopprimere interamente tutto il lavoro di quattro anni», dal momento che egli cerca solo «il riposo e la tranquillità dello spirito», senza tuttavia rinunciare alle proprie convinzioni in materia di astronomia: cfr. Oeuvres, I, pp. 281-282.
  49. ^ Newton, nei suoi Principia, attribuisce a Galileo invece che a Cartesio la prima corretta formulazione di questo principio.
  50. ^ Desmond M. Clarke, Descartes: A Biography, Cambridge University Press, 2006, p.135
  51. ^ Umberto Eco, Mariti di mogli ignote, in L'Espresso, 20 agosto 2010
  52. ^ U.Nicola, Antologia illustrata di filosofia. Dalle origini all'era moderna, Editrice Demetra (Giunti editore), 2003 pag.219
  53. ^ Le censure alle opere cartesiane sono state pubblicate da Jean-Robert Armogathe - Vincent Carraud, La première condamnation des Œuvres de Descartes, d'après des documents inédits aux Archives du Saint-Office, in "Nouvelles de la République des Lettres, 2001-II, pp. 103-137 e da Candida Carella, Le Meditationes cartesiane «Amstelodami 1709» e la condanna del 1720, in "Nouvelles de la République des Lettres, 2008-I, pp.111-120.
  54. ^ Donec corrigantur. Decr. 20. Novembr. 1663. Cfr. per es. Index Librorum Prohibitorum, Romæ, M.CC.LVIII. (1758), p. 46.
  55. ^ L'antica chiesa dedicata nel 520 a Geneviève (Sainte Geneviève-du-Mont), che il tempo aveva rovinato, nel 1746 era stata ricostruita e sormontata da una grande cupola in stile neoclassico. Durante la Rivoluzione francese, nel 1791, l'Assemblea Costituente deliberò di sconsacrare la chiesa per trasformarla in un mausoleo che avrebbe accolto le spoglie dei francesi illustri, come anche quella di Cartesio, chiamandola Panthéon delle glorie nazionali. La decisione presa nel 1792 riguardo al trasferimento del corpo di Cartesio rimase inapplicata. Nel 1793 la cassa che conteneva le reliquie della santa fu bruciata pubblicamente dai giacobini nella Place de Grève. La chiesa fu restituita al culto nel 1821, per essere nuovamente sconsacrata nel 1831. Napoleone III nel 1852 la restituì nuovamente alla Chiesa cattolica. Nel 1870 durante la Comune di Parigi, i comunardi tornarono a disperdere le reliquie della santa. Nel 1885 la Chiesa riconsacrò il Pantheon dedicandolo nuovamente a santa Geneviève. Oggi in esso si svolgono funzioni religiose e commemorazioni civili.
  56. ^ Russell Shorto, Le ossa di Cartesio. Una storia della modernità, Longanesi, pp. 294
  57. ^ Sofia Rocca Binni,Ritorno, Editrice UNI Service, 2010, p.256
  58. ^ Corriere della Sera, ucciso da un'ostia all'arsenico» http://www.corriere.it/cronache/09_novembre_10/cartesio-morto-per-ostia-avvelenata_4250e5a4-ce2a-11de-9a32-00144f02aabc.shtmltitolo=«Cartesio ucciso da un'ostia all'arsenico».
  59. ^ E. Pies, Il delitto Cartesio. Documenti, indizi, prove, Sellerio Editore Palermo, 1999
  60. ^ a b Cartesio morì avvelenato
  61. ^ Cartesio ucciso da un'ostia all'arsenico
  62. ^ Rivelazioni sulla fine del filosofo Cartesio: l'avrebbe ucciso un sacerdote con un'ostia avvelenata
  63. ^ «A causa dell'insegnamento illuminato» di Cartesio, «l'incipiente conversione della regina Cristina poteva essere messa in pericolo» in Cfr. Shorto Russel, Le ossa di Cartesio. Una storia di modernità
  64. ^ Cfr. Les méditations métaphysiques de René Des-Cartes, Paris, 1673, in-4°, p. xxiij. (Temoignage de la Reyne Christine de Svede).
  65. ^ Ettore Lojacono, Cartesio, in I grandi della scienza, anno III, n. 16 (collana a cura de Le Scienze), Milano, 2000, p. 101.
  66. ^ Mario Iannaccone, Una "bufala" avvelenata per Cartesio, da Avvenire, 12 novembre 2009.
  67. ^ Renato Cartesio, Meditazioni metafisiche, Armando Editore, 2003, p.24
  68. ^ Sul rapporto tra geometria euclidea e verità eterne in Cartesio, si veda quest'intervista a Imre Toth compresa nell'Enciclopedia multimediale delle scienze filosofiche.
  69. ^ Res cogitans, sinonimo di pensiero, mente, intelletto, ragione, ingegno, spirito, io, cogito. Realtà spirituale colta mediante l'autoriflessione; è una pura sostanza, indivisibile, finita e immortale. Seguendo il percorso meditativo è più facile a conoscersi del corpo. È la prima realtà a emergere dalle ceneri del dubbio estremo, allorché Cartesio scopre che quand'anche mi ingannassi in tutto, rimarrebbe certificata dall'inganno l'esistenza di me che mi inganno, cioè l'io sono, io esisto, oppure cogito, in quanto colui che si coglie esistente si accorge di non poter rimuovere da sé il pensiero, scoprendosi così identico al pensiero. Nell'uomo l'anima è unita al corpo. La modalità della loro unione dà origine al problema detto del dualismo cartesiano
  70. ^ È usato da Cartesio con due significati: come corpo preso in generale e come il corpo fisico dell'essere umano. Per il primo significato "corpo" è sinonimo di res extensa o sostanza corporea o materia o quantità che, illimitata ed eterna, costituisce l'universo fisico. Col secondo significato si intende il particolare corpo fisico che, unito all'anima, forma l'essere umano. Soggetto a cambiamenti, è un insieme di accidenti che mutano i loro rapporti reciproci, e, non essendo una sostanza, perisce. Funziona come una macchina. Fa parte delle cose materiali.
  71. ^ Contributo alla psicologia: Cartesio, introducendo la differenza tra res cogitans (il pensante, la mente, l'anima) e res extensa (il corpo che occupa uno spazio fisico) considera il corpo come una pura macchina materiale e dunque nessuno ne può vietare l'indagine naturalistica. Rendendo possibile quanto meno lo studio del corpo, veniva superata una prima interdizione riguardo allo studio della psiche da parte della Chiesa, che riservava lo studio del corpo e della mente ai teologi.
  72. ^ Sulla base di queste convinzioni la vivisezione era naturalmente accettata e largamente praticata nella fine del XVII sec.:
    « Somministravano bastonate ai cani con perfetta indifferenza, e deridevano chi compativa queste creature come se provassero dolore. Dicevano che gli animali erano orologi; che le grida che emettevano quando erano percossi erano soltanto il rumore di una piccola molla che era stata toccata, e che il corpo nel complesso era privo di sensibilità. Inchiodavano poveri animali a delle tavole per le quattro zampe, per vivisezionarli e osservare la circolazione del sangue, che era un grande argomento di conversazione. »
    (Nicholas Fontaine, Memoires pour servir à l'histoire de Port-Royal, Cologne 1738, vol.2, pp.52-53)

Voci correlate[modifica | modifica sorgente]

Altri progetti[modifica | modifica sorgente]

Collegamenti esterni[modifica | modifica sorgente]

Controllo di autorità VIAF: 41838958 LCCN: n79061201 SBN: IT\ICCU\CFIV\009080