Integrale di Riemann

Da Wikipedia, l'enciclopedia libera.
(Reindirizzamento da Somma di Riemann)
Vai alla navigazione Vai alla ricerca
Rappresentazione grafica dell'approssimazione numerica dell'integrale di Riemann

In analisi matematica, l'integrale di Riemann è un operatore integrale tra i più utilizzati in matematica. Formulato da Bernhard Riemann, si tratta della prima definizione rigorosa di integrale di una funzione su un intervallo a essere stata formulata.

Definizione[modifica | modifica wikitesto]

Si consideri una funzione continua , che su tale intervallo risulta limitata in virtù del teorema di Weierstrass. Si suddivida l'intervallo tramite una partizione in intervalli . Si definisce il calibro di una partizione il massimo tra le ampiezze di tutti gli intervalli della partizione scelta, cioè

Per ogni intervallo si scelga arbitrariamente un elemento e si definisca la somma di Riemann come:

Alcune scelte comuni sono

  • in tal caso si ha una somma sinistra di Riemann;
  • in tal caso si ha una somma destra di Riemann;
  • in tal caso si ha una somma media di Riemann.

La funzione è integrabile secondo Riemann o Riemann-integrabile in se esiste finito il limite (che si dimostra non dipendere dalla scelta dei ):

Integrale multiplo di Riemann[modifica | modifica wikitesto]

Lo stesso argomento in dettaglio: Integrale multiplo.

Sia un dominio normale, limitata e una misura. Sia una partizione di in domini normali.

Si definisce la somma di Riemann-Darboux come:

In generale la funzione è integrabile in se esiste finito il limite:

Proprietà[modifica | modifica wikitesto]

Lo stesso argomento in dettaglio: Proprietà dell'integrale di Riemann.

Riemman-integrabilità e Darboux-integrabilità[modifica | modifica wikitesto]

Lo stesso argomento in dettaglio: Integrale di Darboux.

In generale una funzione è Riemann-integrabile se e solo se è Darboux-integrabile, e i valori dei due integrali, se esistono, sono uguali tra loro.

Linearità[modifica | modifica wikitesto]

Siano e due funzioni continue definite in un intervallo e siano . Allora:

Additività[modifica | modifica wikitesto]

Sia continua e definita in un intervallo e sia . Allora:

Monotonia[modifica | modifica wikitesto]

Siano e due funzioni continue definite in un intervallo e . Allora:

Valore assoluto[modifica | modifica wikitesto]

Sia integrabile in un intervallo , allora si ha:

Integrale di Stieltjes[modifica | modifica wikitesto]

Lo stesso argomento in dettaglio: Integrale di Riemann-Stieltjes.

Una possibile generalizzazione dell'integrale di Riemann è data dall'integrale di Riemann-Stieltjes, che rende possibile estendere la nozione di integrale utilizzando come variabile di integrazione sotto il segno di differenziale una funzione (detta integratrice):

Se la funzione è differenziabile, vale la formula , e l'integrale di Riemann-Stieltjes coincide con quello di Riemann di , cioè:

L'integrale di Riemann-Stieltjes è tuttavia definito anche nel caso di funzioni integratrici più generiche, che non possiedono derivata, o che sono discontinue.

L'integrale di Riemann-Stieltjes generalizza l'integrale di Riemann in maniera diversa da quello di Lebesgue, e gli insiemi delle funzioni integrabili tramite i due metodi non sono sovrapponibili. È possibile tuttavia ottenere una generalizzazione di entrambi i metodi tramite l'integrale di Lebesgue-Stieltjes.

Bibliografia[modifica | modifica wikitesto]

Voci correlate[modifica | modifica wikitesto]

Altri progetti[modifica | modifica wikitesto]

Collegamenti esterni[modifica | modifica wikitesto]

Controllo di autoritàThesaurus BNCF 19570
  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica