Successione di Mian-Chowla

Da Wikipedia, l'enciclopedia libera.

In teoria dei numeri, la successione di Mian-Chowla è una sequenza ricorsiva di numeri interi definita in modo tale che le somme a due a due dei termini precedenti ad uno dato siano tutte distinte. È stata ideata dai matematici Abdul Majid Mian e Sarvadaman Chowla.

I primi numeri della successione di Mian-Chowla sono: 1, 2, 4, 8, 13, 21, 31, 45, 66, 81, 97, 123, 148, 182, 204, 252, 290, 361, 401, 475, 565, 593, 662, 775, 822, 916, 970[1].

Definizione e proprietà[modifica | modifica sorgente]

La successione inizia con

a_1 = 1 .

Poi per tutti gli  n>1, a_n è il più piccolo intero tale che tutte le somme

a_i + a_j,

dove i e j sono due interi qualsiasi minori o uguali ad n (anche coincidenti), abbiano valori distinti. Non contano le coppie ottenibili mediante proprietà commutativa.
Inizialmente, con a_1, c'è solo una somma di due termini, 1+1=2. Il termine successivo è a_2 = 2, dato che le somme a due a due di {1; 2} sono tutte distinte (1+1=2, 1+2=3 e 2+2=4). Proseguendo, a_3 non può essere 3 per via delle somme coincidenti 1+3=2+2=4. a_3 vale invece 4, e le somme a due a due sono 2, 3, 4, 5, 6 e 8.

Il limite della sommatoria degli inversi dei numeri della successione di Mian-Chowla, ossia

\sum_{i=1}^{\infty} \frac{1}{a_i},

non è noto con precisione; ma dev'essere compreso tra 2,158452685 e 2,158532684.

Varianti[modifica | modifica sorgente]

Assumendo, invece di a_1 = 1, a_1 = 0, si ottiene una sequenza analoga in cui ogni termine è minore di 1 rispetto al corrispettivo dell'altra sequenza. I suoi primi termini sono: 0, 1, 3, 7, 12, 20, 30, 44, 65, 80, 96, 122[2].

Collegamenti esterni[modifica | modifica sorgente]

Voci correlate[modifica | modifica sorgente]

Note[modifica | modifica sorgente]

  1. ^ (EN) Sequenza A005282 in On-Line Encyclopedia of Integer Sequences, The OEIS Foundation.
  2. ^ (EN) Sequenza A025582 in On-Line Encyclopedia of Integer Sequences, The OEIS Foundation.


Matematica Portale Matematica: accedi alle voci di Wikipedia che trattano di Matematica