LHCb: differenze tra le versioni

Da Wikipedia, l'enciclopedia libera.
Vai alla navigazione Vai alla ricerca
Contenuto cancellato Contenuto aggiunto
EnzoBot (discussione | contributi)
m →‎Collegamenti esterni: |date ----> |data
Zizzux (discussione | contributi)
→‎Principali risultati scientifici: scoperta del pentaquark
Riga 84: Riga 84:


Questo risultato è stato considerato dall'allora direttore del [[CERN]], [[Rolf-Dieter Heuer|Rolf Heuer]], tra i più importanti ottenuti al LHC<ref>{{cita web|url=http://www.prospectmagazine.co.uk/magazine/rolf-dieter-heuer-are-scientists-getting-it-wrong|titolo=Rolf-Dieter Heuer: Are scientists getting it wrong?|lingua=en}}</ref>.
Questo risultato è stato considerato dall'allora direttore del [[CERN]], [[Rolf-Dieter Heuer|Rolf Heuer]], tra i più importanti ottenuti al LHC<ref>{{cita web|url=http://www.prospectmagazine.co.uk/magazine/rolf-dieter-heuer-are-scientists-getting-it-wrong|titolo=Rolf-Dieter Heuer: Are scientists getting it wrong?|lingua=en}}</ref>.

=== Scoperta del pentaquark ===

Il [[pentaquark]] è un [[barione]] composto da cinque quark (in particolare da quattro quark e un anti-quark). Questo tipo di particella composta
era stata proposta già da [[Murray Gell-Mann|Gell-Mann]] nell'articolo originale che proponeva il modello a quark per spiegare gli adroni.
Tuttavia fino al 2015 questo tipo di particelle non era stato scoperto sperimentalmente.
L'esperimento LHCb ha scoperto per la prima volta queste particelle analizzando i dati di alcuni decadimenti e trovando delle [[risonanza|risonanze]]
nelle combinazioni di un protone e un mesone J/ψ (composto da un quark charm e un anti-charm)
<ref>{{cita web|url=https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.072001|Observation of J/ψp Resonances Consistent with Pentaquark States in Λ0b→J/ψK−p Decays|lingua=en}}</ref>.
Questo risultato è stato riportato su tantissimi giornali sia generalisti sia di divulgazione scientifica <ref>{{ cita web|url=https://aps.altmetric.com/details/4270274/news|Overview of attention for article published in Physical Review Letters, August 2015|lingua=en}}</ref>.
Successivamente LHCb ha individuato nello stato trovato più stati eccitati ravvicinati.

L'articolo con questa scoperta è il più citato tra quelli dei risultati dell'esperimento LHCb<ref>{{ cita web|url=https://inspirehep.net/literature?sort=mostcited&size=25&page=1&q=collaboration%3ALHCb&ui-citation-summary=true|lingua=en}}</ref>, nonostante i pentaquark non fossero nel programma di ricerca originale dell'esperimento.


== Istituti partecipanti ==
== Istituti partecipanti ==

Versione delle 22:50, 19 feb 2021

Coordinate: 46°14′27.64″N 6°05′48.96″E / 46.241011°N 6.096933°E46.241011; 6.096933
Large Hadron Collider
(LHC)

La catena degli acceleratori del CERN, organizzati in stadi successivi di accelerazione terminanti con l'iniezione in LHC.
Esperimenti del LHC
ATLASA Toroidal LHC Apparatus
CMSCompact Muon Solenoid
LHCbLHC-beauty
ALICEA Large Ion Collider Experiment
TOTEMTotal Cross Section, Elastic Scattering and Diffraction Dissociation
LHCfLHC-forward
MoEDALMonopole and Exotics Detector At the LHC
FASERForwArd Search ExpeRiment
SNDScattering and Neutrino Detector
Preacceleratori del LHC
p e PbAcceleratori lineari di protoni (Linac 2) e di piombo (Linac 3)
PSB (non mostrato)Proton Synchrotron Booster
PSProton Synchrotron
SPSSuper Proton Synchrotron

LHCb (acronimo di Large Hadron Collider beauty) è un esperimento dell'acceleratore LHC del CERN che ha lo scopo di misurare i parametri della violazione CP e decadimenti e fenomeni rari relativi agli adroni in cui è presente il quark beauty (quark b).

Motivazioni fisiche

Logo di LHCb, si nota la sigla CP barrata simbolo della violazione di CP

Sebbene gli studi sulla fisica dei sapori pesanti effettuati in passati esperimenti (per esempio BaBar, Belle, CDF e ), siano ampiamente compatibili con il meccanismo CKM e quindi con il Modello Standard, altri fenomeni rivelano la possibile presenza di fisica non spiegabile da questo modello.

In particolare la violazione della simmetria CP misurata nell'ambito dei decadimenti dei mesoni K e B, non sarebbe sufficiente a generare l'asimmetria tra materia e antimateria presente attualmente nell'universo. Nuove sorgenti di violazione di questa simmetria sarebbero quindi richieste e potrebbero avere spiegazione tramite nuovi modelli (Es. Supersimmetria). Questi nuovi modelli prevedono inoltre un aumento della probabilità di decadimento per decadimenti rari o completamente proibiti all'interno del Modello Standard.

L'esperimento LHCb si propone di studiare in dettaglio la fisica degli adroni con quark , ma ha esteso il suo programma anche alla fisica degli adroni con quark ed , oltre che compiere studi nell'ambito dell'interazione elettrodebole e, recentemente, anche nell'ambito delle interazioni tra protoni e ioni pesanti.

Il rivelatore LHCb

L'esperimento LHCb[1] studia le collisioni di protoni prodotte dall'acceleratore LHC ad energie tra i 7 e i 13 TeV (fino ai 14 TeV nel futuro). In queste condizioni la sezione d'urto per la produzione di coppie di quark è dell'ordine delle centinaia di microbarn (precisamente 295 e 560 μb). Presso LHCb la luminosità dei due fasci di protoni è mantenuta a livelli più bassi rispetto agli esperimenti ATLAS e CMS, poiché si preferiscono eventi con una sola interazione protone-protone per evento, più facilmente analizzabili. La minore occupanza del rivelatore diminuisce anche i danni da radiazione. In queste condizioni vengono prodotte circa coppie di per anno.

Il rivelatore dell'esperimento LHCb è uno spettrometro a singolo braccio posto in avanti rispetto alla zona di interazione con una copertura angolare da 10 mrad a 300 (250) mrad nel piano orizzontale (verticale). Questa scelta è stata effettuata perché gli adroni con b e con anti-b, alle energie suddette, vengono prodotti principalmente nella stessa regione in avanti o indietro rispetto alla zona di interazione. La regione simmetrica rispetto all'esperimento LHCb, indietro rispetto al punto di interazione, non è stata sfruttata per mancanza di spazio e di opportunità scientifica. La collaborazione decise infatti, anche per ragioni economiche, di non allargare la galleria preesistente, già occupata dall'esperimento DELPHI, presso il precedente acceleratore LEP.

Requisiti

Considerando che LHCb deve rivelare decadimenti rari dei mesoni B in un ambiente con alto fondo e alti rate le caratteristiche principali del sistema di rivelazione devono essere le seguenti:

  • deve essere possibile determinare con precisione micrometrica la posizione dei vertici primari d'interazione protone-protone e la posizione dei vertici secondari di decadimenti dei mesoni B, al fine di misurare con precisione adeguata il tempo proprio di decadimento. La risoluzione temporale deve essere elevata, dell'ordina di decine di femto secondi, specialmente per poter risolvere l'oscillazione del mesone e, in generale, le asimmetrie dipendenti dal tempo. Inoltre una buona risoluzione sui vertici è importante perché la presenza di un vertice secondario distante dal vertice primario è la firma distintiva di un decadimento di un adrone con b;
  • LHCb deve essere dotato di un sistema d'identificazione delle particelle, efficiente e selettivo. In particolare è necessario distinguere i leptoni (/) per il trigger e per il B-tagging, ma soprattutto discriminare / su di un'ampia regione d'impulso, variabile tra alcuni GeV e 100 GeV. LHCb deve essere dotato anche di un sistema di identificazione delle particelle neutre, dei leptoni e degli adroni, da usare sia per le esigenze di trigger, sia nella ricostruzione offline degli eventi acquisiti;
  • la risoluzione in massa invariante deve essere tale da consentire di rigettare efficacemente il fondo combinatorio dovuta alla combinazione casuale delle tracce. È necessario pertanto misurare con alta precisione l'impulso delle particelle;
  • LHCb deve essere inoltre dotato di un sistema di trigger veloce ed efficiente, organizzato in più livelli, applicati in cascata, da utilizzare per selezionare gli eventi in cui abbia avuto luogo una produzione di mesoni B e rigettare il fondo costituito da eventi con produzione di quark leggeri o quark charm. Questo è realizzato selezionando particelle con alto impulso trasverso e vertici di decadimento secondari lontani dal vertice primario.

Sottorivelatori

Il rivelatore di vertici (VELO - vertex locator) è costruito attorno alla regione di interazione tra i protoni. È usato per determinare le traiettorie delle particelle vicine al punto di interazione per individuare con precisione il punto di interazione dei due protoni (vertice primario) e quelli di decadimento dei mesoni (vertici secondari).

Il sistema principale di tracciamento è costituito da due piani di rivelatori traccianti posti prima di un magnete dipolare, e tre piani posti dopo questo. Questi garantiscono una misura della traiettoria delle particelle cariche e del loro impulso grazie alla curvatura impressa dal campo magnetico.

Prima e dopo il sistema di tracciamento si trovano due rivelatori ad effetto cherenkov detti RICH1 e RICH2, dove RICH sta per Ring imaging Cherenkov detector. Questi sono sfruttati per l'identificazione di particelle cariche con basso e alto impulso tramite la misura della loro velocità per mezzo dell'effetto suddetto.

I calorimetri elettromagnetici (ECAL) e adronici (HCAL) forniscono la misura dell'energia degli elettroni, fotoni e degli adroni. Queste misure sono usate anche come trigger per identificare particelle con alta energia trasversa (rispetto alla direzione dei fasci).

Come ultimo rivelatore (rispetto al punto di interazione) è il sistema per la rivelazione di muoni, composto da piani di rivelatori traccianti intervallati da muri di ferro per filtrare ogni altro tipo di particella. LHCb detector among the bending plane

Magnete

Per misurare l'impulso delle particelle è utilizzato un magnete "caldo" (non superconduttore). La geometria del magnete è determinata dall'accettanza del rivelatore. È formato da due avvolgimenti a forma di cono, simmetrici, costituiti da conduttori d'alluminio. L'intensità massima del campo d'induzione magnetica è di circa 1 tesla, la direzione è quella verticale. Il magnete è stato progettato in modo che il campo magnetico fosse il più alto possibile tra il VELO e le stazioni di tracciamento e meno di 2 mT nella regione di RICH.

Alle particelle che attraversano il campo magnetico per 10 metri corrisponde in media un campo magnetico integrato del valore di .

Il campo magnetico può essere facilmente invertito grazie alla sua natura non superconduttiva.

Principali risultati scientifici

La collaborazione LHCb ha sinora pubblicato circa 500 articoli scientifici su riviste internazionali. [2] [3]. Tra questi più di quaranta son sulla prestigiosa rivista Physical Review Letters.

Scoperta del decadimento

Uno tra i risultati principali è stata la scoperta del decadimento : questo è un decadimento molto raro nel Modello Standard, con una probabilità prevista dell'ordine di 3 volte ogni miliardo di decadimenti. In diverse teorie oltre il Modello Standard la probabilità di questo decadimento può essere modificata anche di diversi ordini di grandezza. Per questo motivo questo decadimento era stato cercato per trent'anni in vari esperimenti prima di LHCb. La prima evidenza di questo processo si è avuta analizzando i dati del 2011 e 2012, per poi arrivare ad una osservazione in collaborazione con l'esperimento CMS [4] pubblicata sulla rivista Nature. La probabilità di questo decadimento è stata sinora misurata essere in grande accordo con il Modello Standard, ponendo così limiti stringenti sulle possibili teorie oltre questo.

Questo risultato è stato considerato dall'allora direttore del CERN, Rolf Heuer, tra i più importanti ottenuti al LHC[5].

Scoperta del pentaquark

Il pentaquark è un barione composto da cinque quark (in particolare da quattro quark e un anti-quark). Questo tipo di particella composta era stata proposta già da Gell-Mann nell'articolo originale che proponeva il modello a quark per spiegare gli adroni. Tuttavia fino al 2015 questo tipo di particelle non era stato scoperto sperimentalmente. L'esperimento LHCb ha scoperto per la prima volta queste particelle analizzando i dati di alcuni decadimenti e trovando delle risonanze nelle combinazioni di un protone e un mesone J/ψ (composto da un quark charm e un anti-charm) [6]. Questo risultato è stato riportato su tantissimi giornali sia generalisti sia di divulgazione scientifica [7]. Successivamente LHCb ha individuato nello stato trovato più stati eccitati ravvicinati.

L'articolo con questa scoperta è il più citato tra quelli dei risultati dell'esperimento LHCb[8], nonostante i pentaquark non fossero nel programma di ricerca originale dell'esperimento.

Istituti partecipanti

La collaborazione LHCb conta attualmente circa 1340 membri provenienti da 80 istituti in 18 nazioni diverse[9].

Algeria

  • Bandiera dell'Algeria Laboratory of Mathematical and Subatomic Physics, Costantina, Algeria

Brasile

Cina

  • Bandiera della Cina Center for High Energy Physics, Tsinghua University, Beijing
  • Bandiera della Cina School of Physics State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing
  • Bandiera della Cina University of Chinese Academy of Sciences, Beijing
  • Bandiera della Cina Institute of High Energy Physics (IHEP), Beijing
  • Bandiera della Cina South China Normal University, Guangzhou
  • Bandiera della Cina School of Physics and Technology, Wuhan University, Wuhan
  • Bandiera della Cina Institute of Particle Physics, Central China Normal University, Wuhan
  • Bandiera della Cina Tsinghua University, Center for High Energy Physics, Beijing

Colombia

  • Bandiera della Colombia Departamento de Fisica, Universidad Nacional de Colombia, Bogotà

Francia

  • Bandiera della Francia Université Grenoble Alpes, Universitè Savoie Mont Blanc, Institut National de Physique Nucléaire et de Physique des Particules (IN2P3):lapp-Laboratoire d'Annecy-le-Vieux de Physique des Particules Annecy-le-Vieux
  • Bandiera della Francia Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand
  • Bandiera della Francia Université d'Aix-Marseille II, Marsiglia
  • Bandiera della Francia Université de Paris-Sud (Paris XI): Laboratoire de l'Accélérateur Linéaire (LAL), Orsay
  • Bandiera della Francia Sorbonne Université, Paris Diderot Sorbonne Paris Cité, Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Parigi

Germania

  • Bandiera della Germania I. Physikalisches Institut, RWTH Aachen University, Aachen
  • Bandiera della Germania Universität Dortmund: Fachbereich Physik, Dortmund
  • Bandiera della Germania Max-Planck-Institut für Kernphysik (MPI), Heidelberg
  • Bandiera della Germania Ruprecht-Karls-Universität Heidelberg: Physikalisches Institut, Heidelberg
  • Bandiera della Germania Institut für Physik, Universität Rostock, Rostock

Irlanda

  • Bandiera dell'Irlanda Univ. College, Dept. Exptl. Phys. (UCD), Dublino

Italia (89)

Paesi Bassi

Polonia

Romania

  • Bandiera della Romania Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucarest-Măgurele

Russia

  • Bandiera della Russia Petersburg Nuclear Physics Institute (PNPI), Gatčina
  • Bandiera della Russia ITEP Institute for Theoretical and Experimental Physics (ITEP), Mosca
  • Bandiera della Russia Lomonosov Moscow State University, Mosca
  • Bandiera della Russia National Research Centre Kurchatov Institute, Mosca
  • Bandiera della Russia Russian Academy of Sciences: Institute for Nuclear Research (INR), Mosca
  • Bandiera della Russia Yandex School of Data Analysis, Mosca
  • Bandiera della Russia National University of Science and Technology “MISIS”, Mosca
  • Bandiera della Russia Budker Institute of Nuclear Physics (BINP), Novosibirsk
  • Bandiera della Russia Institute for High Energy Physics, Russian Federation State Research Centre (IHEP), Protvino (16)
  • Bandiera della Russia National Research Tomsk Polytechnic University, Tomsk

Slovenia

Spagna

Svizzera (103)

Ucraina

  • Bandiera dell'Ucraina National Academy of Sciences of Ukraine (NASU): Kharkiv Institute of Physics and Technology (KIPT), Charkiv
  • Bandiera dell'Ucraina National Academy of Sciences of Ukraine NAS, Kiev

Regno Unito

Stati Uniti d'America

  • Bandiera degli Stati Uniti University of Michigan, Ann Arbor
  • Bandiera degli Stati Uniti Massachusetts Institute of Technology (MIT), Cambridge
  • Bandiera degli Stati Uniti University of Cincinnati, Cincinnati, OH, United States
  • Bandiera degli Stati Uniti University of Maryland, College Park,
  • Bandiera degli Stati Uniti Los Alamos National Laboratory (LANL), Los Alamos
  • Bandiera degli Stati Uniti Syracuse University, Syracuse

Note

  1. ^ (EN) LHCb Collaboration, The LHCb Detector at the LHC, in Journal of Instrumentation, vol. 3, n. 8, 2008, pp. S08005, DOI:10.1088/1748-0221/3/08/S08005.
  2. ^ (EN) Collezione risultati sulla piattaform INSPIRE, su inspirehep.net.
  3. ^ (EN) Risultati sul sito web dell'esperimento LHCb, su lhcbproject.web.cern.ch.
  4. ^ (EN) Observation of the rare Bs0 →µ+µ− decay from the combined analysis of CMS and LHCb data, su nature.com.
  5. ^ (EN) Rolf-Dieter Heuer: Are scientists getting it wrong?, su prospectmagazine.co.uk.
  6. ^ (EN) journals.aps.org, https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.072001.
  7. ^ (EN) aps.altmetric.com, https://aps.altmetric.com/details/4270274/news.
  8. ^ (EN) inspirehep.net, https://inspirehep.net/literature?sort=mostcited&size=25&page=1&q=collaboration%3ALHCb&ui-citation-summary=true.
  9. ^ (EN) Collaborazione LHCb, su lhcb.web.cern.ch. URL consultato il 15-10-2019.

Voci correlate

Altri progetti

Collegamenti esterni