Acido 5-amminolevulinico: differenze tra le versioni

Da Wikipedia, l'enciclopedia libera.
Vai alla navigazione Vai alla ricerca
Contenuto cancellato Contenuto aggiunto
Approfondimenti e aggiunta di note
Riga 1: Riga 1:
{{F|biochimica|gennaio 2017}}
{{S|biochimica|acidi organici}}
{{Composto chimico
{{Composto chimico
|immagine1_nome = Aminolevulinic acid.svg
|immagine1_nome = Aminolevulinic acid.svg
Riga 6: Riga 4:
|immagine1_descrizione =
|immagine1_descrizione =
|nome_IUPAC = acido 5-ammino-4-ossopentanoico
|nome_IUPAC = acido 5-ammino-4-ossopentanoico
|nomi_alternativi = acido δ-amminolevulinico, dALA, δ-ALA, 5ala
|nomi_alternativi = acido δ-amminolevulinico
acido 5-amminolevulinico

δ-ala

5ala
|titolo_caratteristiche_generali = ---
|titolo_caratteristiche_generali = ---
|formula =
|formula =
|massa_molecolare = 131,13
|massa_molecolare = 131,13
|aspetto =
|aspetto =
Riga 17: Riga 20:
|temperatura_di_ebollizione =
|temperatura_di_ebollizione =
|titolo_indicazioni_sicurezza = ---
|titolo_indicazioni_sicurezza = ---
|simbolo1 =
|simbolo1 = irritante
|simbolo2 =
|simbolo2 =
|frasiH =
|frasiH = {{FrasiH|315|319|335}}
|consigliP = {{ConsigliP|261|264|264+265| </br> 271|280|302+352| </br> 319|321|304+340|</br> 305+351+338|332+317|337+317|362+364|403+233|405|501}} <ref>https://pubchem.ncbi.nlm.nih.gov/compound/137</ref>
}}
}}


L''''acido 5-amminolevulinico''', conosciuto anche come '''acido 5-ammino-4-ossopentanoico''' o anche '''acido''' '''δ-amminolevulinico''' ('''δala'''), è un [[Amminoacidi non proteinogenici|amminoacido non proteinogenico]] coinvolto nella biosintesi delle [[Porfirina|porfirine]], strutture molecolari che portano poi alla sintesi dell'[[eme]] nei [[Mammalia|mammiferi]] e della [[clorofilla]] nelle [[Plantae|piante]].<ref name=":0">{{Cita pubblicazione|nome=L C|cognome=Gardner|nome2=T M|cognome2=Cox|data=1988-05|titolo=Biosynthesis of heme in immature erythroid cells. The regulatory step for heme formation in the human erythron.|rivista=Journal of Biological Chemistry|volume=263|numero=14|pp=6676–6682|accesso=2022-04-05|doi=10.1016/s0021-9258(18)68695-8|url=http://dx.doi.org/10.1016/s0021-9258(18)68695-8}}</ref><ref name=":1">{{Cita pubblicazione|nome=D.|cognome=Von Wettstein|nome2=S.|cognome2=Gough|nome3=C. G.|cognome3=Kannangara|data=1995-07-01|titolo=Chlorophyll Biosynthesis.|rivista=The Plant Cell|pp=1039–1057|lingua=en|accesso=2022-04-05|doi=10.1105/tpc.7.7.1039|url=https://academic.oup.com/plcell/article/7/7/1039-1057/5985002}}</ref>
L''''acido 5-aminolevulinico''' è il primo composto nella via metabolica della biosintesi delle [[Porfirina|porfirine]], la via che porta alla sintesi dell'[[eme]] nei mammiferi e della [[clorofilla]] nelle piante.

Nelle piante la produzione di acido 5-aminolevulinico è la tappa regolata della sintesi della [[clorofilla]]. Piante nutrite con acido 5-aminolevulinico accumulano una quantità tossica di precursori delle clorofille, indicando che la sintesi di questi intermedi non è inibita a valle nella via metabolica.
Viene utilizzato in [[medicina]] per il rilevamento e la rimozione chirurgica dei [[Neoplasia|tumori]].


==Biosintesi==
==Biosintesi==
Negli [[Eukaryota|eucarioti]] non fotosintetici come animali, insetti, funghi e protozoi, così come negli Alphaproteobacteria, è prodotto dall'[[enzima]] [[5-aminolevulinato sintetasi|5-aminolevulinato sintasi]], dalla [[glicina]] e dal [[succinil-Coa]].
5ALA viene biosintetizzato dalla maggior parte degli esseri viventi. In quelli non fotosintetici 5ALA è prodotto dall'[[enzima]] [[5-aminolevulinato sintetasi|5-aminolevulinato sintasi]], partendo dalla [[glicina]] e dal [[Succinil-coenzima A|succinil-CoA]], mentre negli organismi che effettuano la fotosintesi, è prodotto dall'[[acido glutammico]] con l'ausilio di diversi enzimi, come [[glutamil-tRNA sintetasi]], [[glutamil-tRNA reduttasi]] e [[glutammato-1-semialdeide 2,1-aminomutasi]].

== Metabolismo ==

=== Nell'uomo ===
Negli esseri umani, 5ALA è un precursore dell'eme.<ref name=":0" /> Una volta biosintetizzato, il 5ALA subisce una serie di trasformazioni nel [[citosol]] e infine viene convertito in [[protoporfirina IX]] all'interno dei mitocondri.<ref name=":2">{{Cita pubblicazione|nome=Z.|cognome=Malik|nome2=M.|cognome2=Djaldetti|data=1979-06-01|titolo=5-aminolevulinic acid stimulation of porphyrin and hemoglobin synthesis by uninduced friend erythroleukemic cells|rivista=Cell Differentiation|volume=8|numero=3|pp=223–233|lingua=en|accesso=2022-04-11|doi=10.1016/0045-6039(79)90049-6|url=https://www.sciencedirect.com/science/article/pii/0045603979900496}}</ref><ref name=":3">{{Cita pubblicazione|nome=Malini|cognome=Olivo|nome2=Ramaswamy|cognome2=Bhuvaneswari|nome3=Ivan|cognome3=Keogh|data=2011-09|titolo=Advances in Bio-Optical Imaging for the Diagnosis of Early Oral Cancer|rivista=Pharmaceutics|volume=3|numero=3|pp=354–378|lingua=en|accesso=2022-04-11|doi=10.3390/pharmaceutics3030354|url=https://www.mdpi.com/1999-4923/3/3/354}}</ref> Questa molecola [[Sequestrante|chela]] il ferro in presenza dell'enzima [[ferrochelatasi]] per produrre [[eme]].<ref name=":2" /><ref name=":3" />

L'eme aumenta l'attività mitocondriale, attivando così il [[ciclo di Krebs]] e la catena di trasporto degli elettroni<ref name=":4">{{Cita pubblicazione|nome=Shun-ichiro|cognome=Ogura|nome2=Kouji|cognome2=Maruyama|nome3=Yuichiro|cognome3=Hagiya|data=2011-03-17|titolo=The effect of 5-aminolevulinic acid on cytochrome c oxidase activity in mouse liver|rivista=BMC Research Notes|volume=4|numero=1|pp=66|accesso=2022-04-11|doi=10.1186/1756-0500-4-66|url=https://doi.org/10.1186/1756-0500-4-66}}</ref> portando alla formazione di [[adenosina trifosfato]] (ATP) per un adeguato apporto di energia al corpo.<ref name=":4" />

=== Nelle piante ===
Nelle piante, la produzione di 5ALA è la fase su cui viene regolata la velocità di sintesi della [[clorofilla]].<ref name=":1" /> Le piante che ricevono abbondanti quantità di 5ALA come nutriente, accumulano quantità tossiche del precursore della clorofilla, la protoclorofillide. La sintesi di protoclorofillide non viene dunque soppressa e, essendo un forte fotosensibilizzante, in grandi quantità diventa pericoloso per la salute della pianta.<ref>{{Cita pubblicazione|nome=Kiriakos|cognome=Kotzabasis|nome2=Horst|cognome2=Senger|data=1990-02-01|titolo=The Influence of 5-Aminolevulinic Acid on Protochlorophyllide and Protochlorophyll Accumulation in Dark-Grown Scenedesmus|rivista=Zeitschrift für Naturforschung C|volume=45|numero=1-2|pp=71–73|lingua=en|accesso=2022-04-11|doi=10.1515/znc-1990-1-212|url=https://www.degruyter.com/document/doi/10.1515/znc-1990-1-212/html}}</ref>

==Usi==


=== Diagnosi tumorale ===
Nelle piante, alghe, batteri e Archaea è prodotto dall'[[acido glutammico]]. Gli enzimi coinvolti in questa via metabolica sono la glutamil-tRNA sintetasi, la [[glutamil-tRNA reduttasi]] e la glutammato-1-semialdeide 2,1-aminomutasi.
Le cellule tumorali mancano o hanno una ridotta attività della [[ferrochelatasi]] e questo si traduce in un accumulo di [[protoporfirina IX]], una sostanza fluorescente che può essere facilmente visualizzata.<ref>{{Cita libro|titolo=Detection of Bladder Cancer by Fluorescence Cystoscopy: From Bench to Bedside— the Hexvix Story|url=http://dx.doi.org/10.1201/b15582-41|accesso=2022-04-11|data=2013-10-22|editore=CRC Press|pp=435–450|ISBN=978-0-429-19384-2}}</ref>


=== Chirurgia tumorale ===
==Neurochirurgia==
Negli ultimi anni si è discusso l'utilizzo dell'acido 5-aminolevulinico come metodo di sostegno durante un intervento chirurgico di rimozione di un tumore al cervello, in particolar modo del [[Glioblastoma|glioblastoma multiforme]]. Si vuole infatti sfruttare la proprietà del tumore di produrre porfirina fluorescente a partire dalla sostanza in discussione e permettendo così al chirurgo di individuare molto più precisamente il margine del malignoma. Uno studio tedesco del 2006 ha comparato un gruppo operato con l'ausilio dell'acido 5-aminolevulinico e un gruppo operato tradizionalmente<ref>{{Cita pubblicazione|nome=Walter|cognome=Stummer|titolo=Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial|rivista=The Lancet Oncology|volume=7|numero=5|pp=392–401|lingua=en|accesso=2017-12-11|doi=10.1016/s1470-2045(06)70665-9|nome2=Uwe|cognome2=Pichlmeier|nome3=Thomas|cognome3=Meinel}}</ref>. Il risultato dimostrò una significante maggiore efficacia nella rimozione completa del tumore ed un minor numero di recidive nei primi 6 mesi dopo l'intervento a favore del gruppo operato con luce fosforescente.
Negli ultimi anni si è discusso l'utilizzo dell'acido 5-aminolevulinico come metodo di sostegno durante un intervento chirurgico di rimozione di un tumore al cervello, in particolar modo del [[Glioblastoma|glioblastoma multiforme]]. Si vuole infatti sfruttare la proprietà del tumore di produrre porfirina fluorescente a partire dalla sostanza in discussione e permettendo così al chirurgo di individuare molto più precisamente il margine del malignoma.<ref>{{Cita pubblicazione|nome=Walter|cognome=Stummer|titolo=Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial|rivista=The Lancet Oncology|volume=7|numero=5|pp=392–401|lingua=en|accesso=2017-12-11|doi=10.1016/s1470-2045(06)70665-9|nome2=Uwe|cognome2=Pichlmeier|nome3=Thomas|cognome3=Meinel}}</ref>


==Note==
==Note==
Riga 41: Riga 59:
[[Categoria:Acidi carbossilici]]
[[Categoria:Acidi carbossilici]]
[[Categoria:Biochimica]]
[[Categoria:Biochimica]]
{{Amminoacido}}
[[Categoria:Amminoacidi]]

Versione delle 03:21, 11 apr 2022

Acido 5-amminolevulinico
Nome IUPAC
acido 5-ammino-4-ossopentanoico
Nomi alternativi
acido δ-amminolevulinico

acido 5-amminolevulinico

δ-ala

5ala

Caratteristiche generali
Formula bruta o molecolareC5H9NO3
Massa molecolare (u)131,13
Numero CAS106-60-5
Numero EINECS203-414-1
PubChem137
DrugBankDB00855
SMILES
C(CC(=O)O)C(=O)CN
Indicazioni di sicurezza
Simboli di rischio chimico
irritante
Frasi H315 - 319 - 335
Consigli P261 - 264 - 264+265 -
271
- 280 - 302+352 -
319
- 321 - 304+340 -
305+351+338
- 332+317 - 337+317 - 362+364 - 403+233 [1]

L'acido 5-amminolevulinico, conosciuto anche come acido 5-ammino-4-ossopentanoico o anche acido δ-amminolevulinico (δala), è un amminoacido non proteinogenico coinvolto nella biosintesi delle porfirine, strutture molecolari che portano poi alla sintesi dell'eme nei mammiferi e della clorofilla nelle piante.[2][3]

Viene utilizzato in medicina per il rilevamento e la rimozione chirurgica dei tumori.

Biosintesi

5ALA viene biosintetizzato dalla maggior parte degli esseri viventi. In quelli non fotosintetici 5ALA è prodotto dall'enzima 5-aminolevulinato sintasi, partendo dalla glicina e dal succinil-CoA, mentre negli organismi che effettuano la fotosintesi, è prodotto dall'acido glutammico con l'ausilio di diversi enzimi, come glutamil-tRNA sintetasi, glutamil-tRNA reduttasi e glutammato-1-semialdeide 2,1-aminomutasi.

Metabolismo

Nell'uomo

Negli esseri umani, 5ALA è un precursore dell'eme.[2] Una volta biosintetizzato, il 5ALA subisce una serie di trasformazioni nel citosol e infine viene convertito in protoporfirina IX all'interno dei mitocondri.[4][5] Questa molecola chela il ferro in presenza dell'enzima ferrochelatasi per produrre eme.[4][5]

L'eme aumenta l'attività mitocondriale, attivando così il ciclo di Krebs e la catena di trasporto degli elettroni[6] portando alla formazione di adenosina trifosfato (ATP) per un adeguato apporto di energia al corpo.[6]

Nelle piante

Nelle piante, la produzione di 5ALA è la fase su cui viene regolata la velocità di sintesi della clorofilla.[3] Le piante che ricevono abbondanti quantità di 5ALA come nutriente, accumulano quantità tossiche del precursore della clorofilla, la protoclorofillide. La sintesi di protoclorofillide non viene dunque soppressa e, essendo un forte fotosensibilizzante, in grandi quantità diventa pericoloso per la salute della pianta.[7]

Usi

Diagnosi tumorale

Le cellule tumorali mancano o hanno una ridotta attività della ferrochelatasi e questo si traduce in un accumulo di protoporfirina IX, una sostanza fluorescente che può essere facilmente visualizzata.[8]

Chirurgia tumorale

Negli ultimi anni si è discusso l'utilizzo dell'acido 5-aminolevulinico come metodo di sostegno durante un intervento chirurgico di rimozione di un tumore al cervello, in particolar modo del glioblastoma multiforme. Si vuole infatti sfruttare la proprietà del tumore di produrre porfirina fluorescente a partire dalla sostanza in discussione e permettendo così al chirurgo di individuare molto più precisamente il margine del malignoma.[9]

Note

  1. ^ https://pubchem.ncbi.nlm.nih.gov/compound/137
  2. ^ a b L C Gardner e T M Cox, Biosynthesis of heme in immature erythroid cells. The regulatory step for heme formation in the human erythron., in Journal of Biological Chemistry, vol. 263, n. 14, 1988-05, pp. 6676–6682, DOI:10.1016/s0021-9258(18)68695-8. URL consultato il 5 aprile 2022.
  3. ^ a b (EN) D. Von Wettstein, S. Gough e C. G. Kannangara, Chlorophyll Biosynthesis., in The Plant Cell, 1º luglio 1995, pp. 1039–1057, DOI:10.1105/tpc.7.7.1039. URL consultato il 5 aprile 2022.
  4. ^ a b (EN) Z. Malik e M. Djaldetti, 5-aminolevulinic acid stimulation of porphyrin and hemoglobin synthesis by uninduced friend erythroleukemic cells, in Cell Differentiation, vol. 8, n. 3, 1º giugno 1979, pp. 223–233, DOI:10.1016/0045-6039(79)90049-6. URL consultato l'11 aprile 2022.
  5. ^ a b (EN) Malini Olivo, Ramaswamy Bhuvaneswari e Ivan Keogh, Advances in Bio-Optical Imaging for the Diagnosis of Early Oral Cancer, in Pharmaceutics, vol. 3, n. 3, 2011-09, pp. 354–378, DOI:10.3390/pharmaceutics3030354. URL consultato l'11 aprile 2022.
  6. ^ a b Shun-ichiro Ogura, Kouji Maruyama e Yuichiro Hagiya, The effect of 5-aminolevulinic acid on cytochrome c oxidase activity in mouse liver, in BMC Research Notes, vol. 4, n. 1, 17 marzo 2011, pp. 66, DOI:10.1186/1756-0500-4-66. URL consultato l'11 aprile 2022.
  7. ^ (EN) Kiriakos Kotzabasis e Horst Senger, The Influence of 5-Aminolevulinic Acid on Protochlorophyllide and Protochlorophyll Accumulation in Dark-Grown Scenedesmus, in Zeitschrift für Naturforschung C, vol. 45, n. 1-2, 1º febbraio 1990, pp. 71–73, DOI:10.1515/znc-1990-1-212. URL consultato l'11 aprile 2022.
  8. ^ Detection of Bladder Cancer by Fluorescence Cystoscopy: From Bench to Bedside— the Hexvix Story, CRC Press, 22 ottobre 2013, pp. 435–450, ISBN 978-0-429-19384-2. URL consultato l'11 aprile 2022.
  9. ^ (EN) Walter Stummer, Uwe Pichlmeier e Thomas Meinel, Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial, in The Lancet Oncology, vol. 7, n. 5, pp. 392–401, DOI:10.1016/s1470-2045(06)70665-9. URL consultato l'11 dicembre 2017.

Altri progetti