Acciaio inossidabile

Da Wikipedia, l'enciclopedia libera.
Se riscontri problemi nella visualizzazione dei caratteri, clicca qui.
Acciaio inossidabile
Il Gateway Arch di Eero Saarinen a St. Louis, realizzato interamente in acciaio inox.
Il Gateway Arch di Eero Saarinen a St. Louis, realizzato interamente in acciaio inox.
Nomi alternativi
Acciaio inox
Caratteristiche generali
Composizione lega costituita principalmente da ferro, carbonio e cromo
Aspetto grigio lucente
Stato di aggregazione (in c.s.) solido
Cristallinità in genere policristallino
Proprietà chimico-fisiche
Resistività elettrica (O·m) 0,714 × 10-6 [1]

Gli acciai inox (o acciai inossidabili) sono leghe a base di ferro e carbonio che uniscono alle proprietà meccaniche tipiche degli acciai al carbonio caratteristiche peculiari di resistenza alla corrosione.
Tali materiali devono la loro capacità di resistere alla corrosione alla presenza di elementi di lega, principalmente cromo, in grado di passivarsi, cioè di ricoprirsi di uno strato di ossidi invisibile, di spessore pari a pochi strati atomici (3-5 × 10−7 mm), che protegge il metallo sottostante dall'azione degli agenti chimici esterni.
La famiglia degli acciai inox ha la caratteristica comune di avere un contenuto massimo di carbonio dell'1,2% e un valore minimo di cromo "libero" pari all'11-12% per poter avere formazione dello strato di passivazione.Con il termine libero si intende tutto quel cromo che non ha legato con il carbonio.Infatti il cromo ha una certa affinità con il carbonio e può dare origine ai cosiddetti carburi di cromo,composti indesiderati all'interno di questi acciai.In genere per limitare la possibilità di formazione dei carburi di cromo negli acciai inox si ha un basso tenore percentuale di carbonio.
Se la percentuale dei leganti è elevata, non si parla più di acciai inox bensì di leghe inox austenitiche.
La definizione di inox deriva dal francese inoxydable.

Storia[modifica | modifica sorgente]

La scoperta dell'acciaio inossidabile si deve all'inglese Harry Brearly di Sheffield.
Nel 1913, sperimentando acciai per canne di armi da fuoco, scoprì che un suo provino di acciaio con il 13-14% di cromo e con un tenore di carbonio relativamente alto (0,25%) non arrugginiva quando era esposto all'atmosfera.
Successivamente questa proprietà venne spiegata con la passivazione del cromo, che forma sulla superficie una pellicola di ossido estremamente sottile, continua e stabile.
I successivi progressi della metallurgia fra gli anni quaranta e sessanta hanno ampliato il loro sviluppo e le loro applicazioni.
Tuttora vengono perfezionati e adattati alle richieste dei vari settori industriali, come il petrolifero/petrolchimico, minerario, energetico, nucleare ed alimentare.

Passivazione[modifica | modifica sorgente]

Molto propria è la dizione anglosassone stainless derivata dalla capacità di questi materiali di ossidarsi ma non arrugginirsi (o come si suol dire passivarsi) negli ambienti atmosferici e naturali.
Il fenomeno della passivazione avviene per reazione del metallo con l'ambiente ossidante (aria, acqua, soluzioni varie, ecc).
La natura dello strato passivante, formato essenzialmente da ossidi/idrossidi di cromo, è autocicatrizzante e garantisce la protezione del metallo, anche se localmente si verificano abrasioni o asportazioni della pellicola, qualora la composizione chimica dell'acciaio e la severità del danno siano opportunamente inter-relazionate.
In particolare, il film passivo può essere più o meno resistente in funzione della concentrazione di cromo nella lega e in relazione all'eventuale presenza di altri elementi leganti quali il nichel, il molibdeno, il titanio.

Tipi di acciaio inossidabile[modifica | modifica sorgente]

pezzi speciali per condutture in acciaio inossidabile.

Gli acciai inox si dividono tradizionalmente, secondo la loro microstruttura, in tre grandi famiglie:

Oltre a queste tre categorie esistono anche altre due famiglie meno note, il cui impiego è in forte ascesa, per impieghi specifici:

  • gli austeno-ferritici o duplex
  • gli indurenti per precipitazione

Acciaio inox martensitico[modifica | modifica sorgente]

Gli inossidabili martensitici sono leghe al cromo (dall'11 al 18% circa) con carbonio relativamente elevato, contenenti piccole quantità di altri elementi. Tipici elementi in essi presenti sono manganese, silicio, cromo e molibdeno; può essere aggiunto zolfo se si necessita di truciolabilità (a scapito comunque delle caratteristiche meccaniche).

L'acciaio inox martensitico ha caratteristiche meccaniche molto elevate ed è ben lavorabile alle macchine, è l'unico acciaio inox che può prendere la tempra e pertanto aumentare le sue proprietà meccaniche (carico di rottura, carico di snervamento, durezza) mediante trattamento termico.

È conosciuto soprattutto con la nomenclatura americana: per esempio l'acciaio al solo cromo è l'AISI serie 400 (da ricordare AISI 410 e 420, con 0,20% < C < 0,40% e Cr = 13% circa; AISI 440 con C = 1% circa e Cr = 17%); nella nomenclatura UNI ha sigle come X20Cr13, X30Cr13, X40Cr14. È magnetico. È anche conosciuto come acciaio "serie 00".

L'acciaio inossidabile martensitico è autotemprante, ma dalla temperatura di laminazione alla temperatura ambiente nasce una struttura troppo tensionata; si segue sempre quindi la procedura:

  • ricottura di lavorabilità: essa è svolta col metodo isotermico solo quando si voglia la durezza minima; altrimenti si raffredda a velocità costante, scegliendola in base alla durezza che si vuole ottenere (vedi curve CCT);
  • tempra a temperatura di circa 1000 °C e per un tempo sufficiente a sciogliere i carburi di cromo, serve per aumentare la resistenza all'usura;[2]
  • rinvenimento a temperature diverse a seconda che si voglia privilegiare la durezza, la resistenza alla corrosione o la tenacità.

Gli acciai inossidabili martensitici sono utilizzati soprattutto per la loro elevata resistenza allo scorrimento viscoso, sebbene la loro formalità e saldabilità sia estremamente difficoltosa e la loro resistenza alla corrosione sia minore rispetto a quella delle altre famiglie.

La resistenza alla corrosione non è eccezionale perché il cromo ha più basso tenore tra le categorie di acciai inox; inoltre perché la struttura martensitica ha un'alta densità di difetti reticolari e come tale è una struttura incrudita dunque più sensibile ai fenomeni corrosivi.

L'AISI 440 è utilizzato per l'utensileria inossidabile (coltello, forbice, bisturi, lametta, iniettore per motore a scoppio).

Acciaio inox ferritico[modifica | modifica sorgente]

Come i precedenti, anche gli acciai ferritici sono acciai inossidabili al solo cromo (variabile dall'11 al 30% circa[3]).

Questi acciai hanno buona resistenza meccanica ed alla corrosione. Hanno struttura cubica a corpo centrato come gli acciai al carbonio, ma non possono innalzare le loro caratteristiche meccaniche per mezzo di trattamenti termici.

Hanno un minor tenore di carbonio rispetto al martensitico. Un tipo particolarmente resistente al calore contiene il 26% di cromo. Altri elementi presenti sono il molibdeno, l'alluminio per aumentare la resistenza all'ossidazione a caldo, lo zolfo per facilitare la lavorabilità.

Il limite di snervamento è molto basso e, non potendosi fare trattamenti termici per l'assenza di punti critici, si esegue la ricristallizzazione o l'incrudimento. Si consiglia di non scaldarlo oltre gli 850 °C per non ingrossare il grano, e di non sostare tra i 400 e i 570 °C nel raffreddamento, per non incorrere nella fragilità al rinvenimento.

Le proprietà fondamentali sono: moderata resistenza alla corrosione, che aumenta con la percentuale di cromo nonché con la introduzione in lega del molibdeno; è magnetizzabile; non è temprabile ed è da usare sempre dopo ricottura; la saldabilità è scarsa, in quanto il materiale che viene surriscaldato subisce l'ingrossamento del grano cristallino a causa del cromo.

Gli impieghi più comuni sono vasellame o posateria di bassa qualità, acquai, lavelli e finiture per l'edilizia. In lamiere sottili si usano per rivestimenti, piastre per ponti navali, sfioratori, trasportatori a catena, estrattori di fumi e depolverizzatori.

Acciaio inox austenitico[modifica | modifica sorgente]

Exquisite-kfind.png Per approfondire, vedi Leghe inox austenitiche.


 % Cr  % Ni AISI UNI EN 10088-1
18 10 304, 316 X5CrNi1810, X5CrNiMo1712-2
18 10 321, 347, 348 X8CrNiTi1810,X8CrNiNb1811
18 13 317 X8CrNiMb1712
23 12 309
25 20 310 X8CrNi2520

Gli acciai inossidabili austenitici sono gli acciai inossidabili più comuni, hanno un tenore di carbonio inferiore allo 0,1%. Il cromo invece può variare tra il 18% e il 25% e il nichel dall'8% al 20%. Il nichel è in grado di estendere il campo austenitico, ma ciò non basta. Il motivo allora per cui noi troviamo austenite a temperatura ambiente, e tale struttura si mantiene per tempi indefiniti, è dovuto alle curve di Bain. Queste curve ci dicono che per far avvenire la trasformazione perlitica, il materiale va tenuto in forno per tempi lunghissimi, cosa che nessuno fa. Quindi l'austenite non può formare perlite, perché i tempi di trasformazione sono eccessivi. Ma la cosa principale è che le temperature per formare martensite sono talmente basse, per effetto combinato del cromo e del nichel, che a temperatura ambiente la struttura non può far altro che rimanere austenitica.

È un acciaio a struttura cubica a facce centrate, contenente Ni e Cr in percentuale tale da conservare la struttura austenica anche a temperatura ambiente. Viene classificato in base alla percentuale di Ni e di Cr (vedi tabella); nella classificazione ASTM costituisce la serie 3XX.

La composizione base dell'acciaio inox austenitico è il 18% di Cr e l'8% di Ni, codificata in 18/8 (AISI 304). Una percentuale del 2-3% di molibdeno permette la formazione di carburi di molibdeno migliori rispetto a quelli di cromo e assicura una miglior resistenza alla corrosione dei cloruri (come l'acqua di mare e di sali disgelanti)(acciaio 18/8/3) (AISI 316). Il contenuto di carbonio è basso (0,08% max di C), ma esistono anche acciai inox austenitici dolci (0,03% di C max). L'acciaio inox austenitico può essere stabilizzato con titanio o niobio per evitare una forma di corrosione nell'area delle saldature (vedi più avanti le debolezze di questo tipo di acciaio). Considerando la notevole percentuale di componenti pregiati (Ni, Cr, Ti, Nb, Ta), gli acciai inox austenitici sono fra i più costosi tra gli acciai di uso comune.

Le proprietà fondamentali sono:

  • ottima resistenza alla corrosione;
  • facilità di ripulitura e ottimo coefficiente igienico;
  • facilmente lavorabile, forgiabile e saldabile;
  • incrudibile se lavorato a freddo e non tramite trattamento termico;
  • in condizione di totale ricottura non si magnetizza.

La loro struttura austenitica (con cristallo CFC) li rende immuni dalla transizione duttile-fragile (che si manifesta invece con la struttura ferritica, cristallo ccc), quindi conservano la loro tenacità fino a temperature criogeniche (He liquido). La dimensione dei grani, sensibilmente più elevata di quella degli acciai ferritici da costruzione, li rende resistenti allo scorrimento viscoso; di conseguenza fra gli acciai per costruzione di recipienti a pressione, sono quelli che possono essere utilizzati alle temperature più elevate (600 °C).

Dato che l'austenite è paramagnetica, questi acciai possono essere facilmente riconosciuti disponendo di magneti permanenti calibrati.

Gli impieghi di questi acciai sono molto vasti: pentole e servizi domestici, serramenti [4] e finiture architettoniche, mattatoi, fabbriche di birra, lattine per bibite e prodotti alimentari; serbatoi per gas liquefatti, scambiatori di calore, apparecchi di controllo dell'inquinamento e di estrazione di fumi, autoclavi industriali. La loro resistenza a gran parte degli aggressivi chimici li rende inoltre molto apprezzati nell'industria chimica. Lo stesso tipo di acciaio fu utilizzato nel 1929 per la costruzione della guglia del Chrysler Building di New York: la struttura fu costruita in officina in 4 tronconi separati e poi assemblati sulla cima della costruzione nel giro di 90 minuti. La lucentezza della guglia, a 80 anni dalla sua costruzione, testimonia l'altissimo grado di resistenza e di inossidabilità del Nirosta.

Gli acciai inox austenitici soffrono però di alcune limitazioni:

  • a bassa temperatura la resistenza alla corrosione diminuisce drasticamente: gli acidi rompono il film di ossido e ciò provoca corrosione generica in questi acciai;
  • nelle fessure e nelle zone protette la quantità di ossigeno può non essere sufficiente alla conservazione della pellicola di ossido, con conseguente corrosione interstiziale;
  • gli ioni degli alogenuri, specie l'anione (Cl-), spezzano il film passivante sugli acciai inox austenitici e provocano la cosiddetta corrosione ad alveoli, definita in gergo pitting corrosion. Un altro effetto del cloro è la SCC (Stress Corrosion Cracking - rottura da tensocorrosione).

L'unico trattamento termico consigliabile per questa classe di acciai è un quello di solubilizzazione del C a 1050 °C, con raffreddamento rapido per evitare la permanenza nell'area fra 800 e 400 °C, dove può avvenire la precipitazione dei carburi di cromo. La precipitazione di questi carburi, che generalmente sono Cr23C6, implica un impoverimento locale di cromo che può scendere sotto il 12%, perdendo dunque le proprietà inossidabili. La conseguenza è la possibile insorgenza di corrosione per pitting.

Acciaio duplex[modifica | modifica sorgente]

Gli acciai austeno-ferritici, detti anche duplex, presentano una struttura mista di austenite e di ferrite. Si tratta di un acciaio al cromo ibrido: il tenore di cromo va dal 18 al 26% e quello di nichel dal 4,5 al 6,5%, quantità insufficienti per determinare una struttura microcristallina totalmente austenitica (che quindi rimane in parte ferritica). Quasi tutte le sue varianti contengono fra il 2,5 ed il 3% di molibdeno. Esistono inoltre forme di Duplex, chiamati "poveri" che non contengono molibdeno e hanno tenori di nickel minori del 4,5%.

Le proprietà fondamentali sono:

  • struttura microcristallina peculiare nota come duplex, austenitica e ferritica, che conferisce più resistenza alle rotture per tensocorrosione;
  • maggior grado di passivazione per il più alto tenore di cromo (e la presenza del molibdeno) e quindi miglior resistenza alla corrosione puntiforme (pitting) rispetto agli acciai 18-8;
  • saldabilità e forgiabilità buone;
  • alta resistenza a trazione ed allo snervamento.

Gli impieghi più comuni sono: scambiatori di calore, macchine per movimentazione dei materiali, serbatoi e vasche per liquidi ad alta concentrazione di cloro, refrigeratori ad acqua marina, dissalatori, impianti per salamoia alimentare ed acque sotterranee e ricche di sostanze aggressive.

Acciaio inox indurente per precipitazione[modifica | modifica sorgente]

Questi acciai presentano la possibilità di innalzare notevolmente le proprie caratteristiche meccaniche per trattamenti termici particolari di invecchiamento, che consentono di far precipitare fasi intermetalliche dure nella matrice al fine di aumentare le proprietà meccaniche della lega. Inoltre questi acciai possiedono resistenza alla corrosione paragonabile a quella degli acciai austenitici classici, a parità di cromo e molibdeno.

Acciaio inox ad alta temperatura[modifica | modifica sorgente]

Questi acciai inox sono stati messi a punto per operare ad elevata temperatura in condizioni ossidanti. La percentuale di cromo è del 24% ed il nichel va dal 14 al 22%.

Le proprietà fondamentali sono resistenza all'ossidazione (sfaldatura) ad alta temperatura e buona resistenza meccanica alle alte temperature.

Gli impieghi più comuni avvengono in parti di forni, tubi irradianti e rivestimenti di muffole, per temperature di esercizio fra 950 e 1100 °C.

Acciaio inox superferritico[modifica | modifica sorgente]

È stato ideato per ridurre la suscettibilità alla corrosione alveolare ed alle rotture per tensocorrosione degli inox austenitici. Questi acciai dolci al cromo hanno due composizioni possibili: cromo 18% e molibdeno 2%, oppure cromo 26% e molibdeno 1%.

Le proprietà fondamentali sono le stesse degli acciai inox ferritici, con in più la resistenza alla corrosione alveolare ed alla rottura da tensocorrosione (SCC); saldabilità scarsa o discreta.

A causa della bassa saldabilità gli impieghi sono limitati a particolari saldati di meno di 5 mm di spessore. Sono utilizzati per pannelli e radiatori solari, tubi di scambiatori di calore e di condensatori, serbatoi per acqua calda e tubazioni di circolazione di salamoie nelle industrie alimentari.

Acciai da ultra alto vuoto e criogenia[modifica | modifica sorgente]

Il metallo più utilizzato in UV e in UHV è un acciaio inox che col ferro, ha cromo, nichel, con tracce di silicio, carbonio, manganese, molibdeno, niobio e titanio, è utilizzato come costituente strutturale dell'ambiente da vuoto, ha il vantaggio di essere reperibile e relativamente economico, ha proprietà di resistenza meccanica abbastanza elevate, non si tempra, si salda con facilità, ha un basso degasaggio, è abbastanza inerte chimicamente.

Nomenclatura AISI[modifica | modifica sorgente]

In commercio esistono vari tipi di acciai inox, conosciuti principalmente sotto la notazione di acciaio AISI (American Iron and Steel Institute, Istituto di unificazione statunitense per ferro ed acciaio).
La notazione AISI ha assunto erroneamente il significato di sinonimo per "acciaio inox", poiché tale istituto codifica anche tipi differenti di acciaio.
La notazione AISI individua l'acciaio inox attraverso una sigla a tre cifre con possibile aggiunta di una lettera.
la prima di queste cifre indica la classe dell'acciaio:

  • serie 2XX - acciaio austenitico al cromo-nichel-manganese
  • serie 3XX - acciaio austenitico al cromo-nichel e cromo-nichel-molibdeno
  • serie 4XX - acciai ferritici o martensitici al cromo
  • serie 5XX - acciaio martensitico al cromo medio
  • serie 6XX - acciaio indurente per precipitazione al cromo

tra le lettere ad esempio:

  • la lettera "L" indica la bassa percentuale di carbonio (Low Carbon) presente. Questa caratteristica fa sì che l'acciaio leghi meno gas, in quanto il carbonio tende, in qualsiasi condizione, a legarsi con l'idrogeno, precipitando idrocarburi; la presenza di idrogeno è spesso penalizzante per l'acciaio, ad alte temperature e soprattutto in condizione di ionizzazione (radiazioni ionizzanti). L'atomo di idrogeno ionizzato (H+) è molto piccolo e ad alta temperatura si sposta con maggiore facilità nel reticolo dell'acciaio, rischia di accumularsi e provocare pericolose discontinuità. Il basso tenore di carbonio consente anche una buona saldabilità anche per spessori > 6 mm.
  • l'annotazione "N" sta ad indicare la presenza di azoto disciolto nella lega. Grazie alle sue proprietà di gas inerte (il legame azoto-azoto è triplo, gli atomi sono molto vicini tra loro e perciò si separano difficilmente), l'azoto funge da schermo sull'acciaio limitandone la contaminazione esterna.
  • L'annotazione Ti sta ad indicare la presenza di titanio il quale assicura una completa resistenza alla corrosione nelle saldature di elementi di grosso spessore.

Sigle commerciali[modifica | modifica sorgente]

I vari acciai inox differiscono in base alla percentuale in peso degli elementi costituenti la lega.
Tra gli acciai più comunemente utilizzati distinguiamo:

  • 304 - Cr (18%) Ni (10%) C (0,05%);
  • 304 L - (Low Carbon): Cr (18%) Ni (10%) C (< 0.03%);
  • 316 - Cr (16%) Ni (11.3/13 %) Mo (2/3 %)
  • 316 L - (Low Carbon): Cr (16,5/18,5%) Ni (10,5/13,5%) Mo (2/2,25%) C (< 0.03%);
  • 316 LN - (Low Carbon Nitrogen) (presenza di azoto disciolto nel reticolo cristallino del materiale);
  • 316 LN ESR (electro-slag remelting);
  • 430: Cr (16/18 %) C (0,08%).

Questi materiali possono essere anche stabilizzati al titanio o al niobio come:

  • 316 Ti
  • 316 Nb
  • 430 Ti.

La posizione del ferro all'interno della lega influenza diverse caratteristiche del materiale, di elevata importanza per il suo utilizzo.
La principale è la amagneticità:

  • nella disposizione a corpo centrato il materiale evidenzia proprietà ferritiche e perciò magnetiche;
  • in quella a facce centrate l'acciaio è austenitico e perciò amagnetico.

Come già accennato in precedenza, gli AISI 304 e 316 appartengono alla famiglia degli acciai a struttura austenitica mentre l'AISI 420 è a struttura martensitica.
La differenza tra l'acciaio 304 e 316, a parte il costo maggiore e la presenza nel 316 di Mo, è data dalla più elevata austenicità del secondo grazie alla più alta percentuale di nichel.
Sebbene questi acciai conservino la struttura austenitica, in alcuni casi restano nella massa "isole" che hanno una struttura ferritica, derivata dalla ferrite δ.
Nell'UV si necessita di una tipologia d'acciaio austenitico, poiché possiede una struttura molto legata e di conseguenza meno attaccabile chimicamente.
La presenza di metalli refrattari, come il molibdeno, aiuta a legare elettro-chimicamente gli atomi di ferro, conferendone maggiore inerzia e un grado di durezza superiore (circa 180 gradi Vickers).
L'acciaio austenitico permette di utilizzare la lega anche nell'UHV, poiché l'amagneticità strutturale le dona un'inerzia quasi totale alle interazioni "deboli" garantendo un vuoto più pulito.
La presenza di cromo, nonostante le sue caratteristiche ferriticizzanti, conferisce all'acciaio stabilità ed elasticità, garantendone così duttilità e malleabilità.
Resta comunque il fatto che, in questa tecnologia, l'acciaio più utilizzato sia quello austenitico.
La sua temperatura di fusione è di 1435 °C, tuttavia dobbiamo considerare che, durante la saldatura, nell'intervallo di temperatura tra i 600 e gli 800 °C, si trasforma, o meglio decade, da austenitico a ferritico (come indicato nel diagramma di sensibilizzazione di Schaeffler).
Il suo decadimento è più rapido e permanente per gli acciai 304 rispetto ai 316.
Periodo di sensibilizzazione:

  • 304: 10 minuti;
  • 304 L: 30 minuti;
  • 316 L: un'ora.

Più esteso è questo periodo (la estensione è proporzionale alla presenza di nickel), più il materiale è affidabile.
Per ridurre ulteriormente il degasaggio della lega 316 si effettua il processo di electro slag remelting, in cui la stessa viene rifusa in un forno a radiofrequenze, in modo da eliminare le microscorie di ossidi e di carburi, che, oltre a "sporcare" il vuoto, la rendono più ferritica. Il 316 L N ESR, poiché molto costoso, viene utilizzato limitatamente e prevalentemente negli acceleratori di particelle.
L'acciaio è costituente delle camere da vuoto, delle flange e di eventuali altri elementi come bulloni e dadi; in ogni modo, una camera da vuoto in acciaio richiede ulteriori trattamenti finalizzati a diminuire il costante degasaggio di idrogeno dalle sue pareti. Uno dei principali è il vacuum firing, con il quale l'acciaio viene in primo luogo scaldato a 1400 °C e poi rapidamente raffreddato, per attraversare celermente la zona di sensibilizzazione senza decadere in ferritico. Così, oltre alla diminuzione della percentuale di azoto sulle superfici, si ottiene un aumento della sua austeniticità.

Acciai inox per acqua potabile[modifica | modifica sorgente]

Secondo il Decreto del Ministero della Sanità del 21 marzo 1973 i tipi di acciai inossidabili che possono essere impiegati per il contatto con acque potabili, e più in generale con gli alimenti, sono i seguenti:

Sigla UNI EN 10088-1 Sigla AISI
X10CrNi18-9 302
X10CrNiS18-9 303
X5CrNi18-10 304
X2CrNi18-11 304 L
X5CrNiMo17-12-2 316
X2CrNiMo17-12-2 316 L
X6CrNiTi18-10 321
X6CrNiNb18-10 347
X12Cr13 410
X12CrS13 416
X20Cr13 420
X30Cr13 420
X39Cr13 420
X6Cr17 430

Armature inossidabili[modifica | modifica sorgente]

Le barre di acciaio inox utilizzate per strutture in calcestruzzo armato in genere sono realizzate con acciai inossidabili di microstruttura austenitica o duplex austeno-ferritica.
I primi contengono 17-18% di Cr e 8-10% di Ni, mentre i secondi contengono 22-26% di Cr e 4-8% di Ni.
Le armature in acciaio inox, al contrario delle armature comuni in acciaio al carbonio, rientrano nel gruppo delle armature poco sensibili alla corrosione.
Infatti gli acciai inossidabili possono resistere alla corrosione in presenza di calcestruzzo con un contenuto di cloruri molto elevato, anche quando questo è carbonatato.
Invece nel calcestruzzo non carbonatato e non inquinato da cloruri, le barre di acciaio inossidabile si comportano come le normali barre di acciaio al carbonio, pertanto non apportano alcun vantaggio nei confronti della resistenza alla corrosione della struttura.
Le barre d'acciaio inossidabile però devono garantire le stesse prestazioni meccaniche (resistenza allo snervamento e la duttilità) richieste alle normali barre d'armatura.
A tal fine le armature di acciaio inossidabile austenitico vengono sottoposte a trattamenti di rafforzamento mentre per gli acciai inossidabili duplex, tali trattamenti non sono indispensabili.
L'utilizzo dell'armatura inossidabile è limitato dall’elevato costo, il quale può avere un rilevante impatto sul costo necessario alla realizzazione dell'intera struttura.
Infatti le barre in acciaio inox, in funzione della composizione chimica, costano da sei a dieci volte in più rispetto alle armature comuni in acciaio al carbonio.
L'utilizzo di barre in acciaio inossidabile pertanto viene limitato per la realizzazione di opere in condizioni ambientali d'elevata aggressività, soprattutto legata alla presenza d'acqua di mare o di sali disgelanti (azione dei cloruri), oppure nei casi in cui, per l'importanza della struttura, sia richiesta una vita di servizio molto lunga.
In questi casi infatti la protezione offerta dal copriferro può risultare insufficiente a prevenire la corrosione, e pertanto l'acciaio inox può garantire la durata richiesta per l'opera senza dover ricorrere successivamente a costose e complesse manutenzioni straordinarie che, in alcuni casi, risultano più onerose del costo iniziale dovuto alla scelta dell'armatura inossidabile.
Il costo di costruzione si può ridurre limitandone l’utilizzo alle parti più vulnerabili della struttura o alle zone in cui lo spessore di copriferro deve essere ridotto, come negli elementi snelli o nei rivestimenti di facciata.
In questo caso è necessario che l'armatura al carbonio e quella inox non entrino mai in contatto per evitare fenomeni di corrosione elettrochimica.
Gli acciai inossidabili austenitici hanno un coefficiente di dilatazione termica di circa 1,8 × 10−5  °C−1, maggiore sia di quello del calcestruzzo (circa 10-5 °C-1) sia di quello delle comuni armature (1,2 × 10-5  °C−1).
Il maggiore coefficiente di dilatazione termica potrebbe creare situazioni sfavorevoli nel caso di incendi, tuttavia l'acciaio inossidabile austenitico ha una conducibilità termica notevolmente inferiore rispetto all'acciaio al carbonio.

Contaminazione ferrosa[modifica | modifica sorgente]

La resistenza alla corrosione dell’acciaio inox può essere messa in pericolo dalla contaminazione ferrosa derivante da particelle provenienti da operazioni di taglio, rettifica e saldatura dell’acciaio al carbonio.
La presenza di contaminazioni sulle superfici del metallo, oltre a creare un difetto estetico può dar luogo ad inneschi di corrosione localizzata (pitting), anche solo a contatto con aria, pregiudicando la giusta condizione di passività nel tempo.
Infatti, le particelle di ferro che si depositano sulla superficie dell'acciaio inox, ad esempio a causa di spruzzi di saldatura di componenti di acciaio al carbonio, si ossidano molto velocemente formando la ruggine, anche solo in presenza dell'umidità atmosferica, causando un'antiestetica macchiatura della superficie, che in alcuni casi, ostacolando il fenomeno di naturale passivazione dell'acciaio inox, può evolvere in fenomeni di pitting.
Per questa ragione la lavorazione dell’acciaio al carbonio e quella dell’acciaio inossidabile devono avvenire in due zone distinte e separate.
Inoltre, gli attrezzi manuali (es. spazzole) e i macchinari utilizzati (es. presse), non devono contenere acciaio al carbonio e devono essere puliti in maniera approfondita quando si passa dall’acciaio al carbonio all’acciaio inossidabile.
Le lavorazioni di taglio, saldatura o sabbiatura non deve essere fatta con elementi contenenti acciaio al carbonio (es. dischi abrasivi, elettrodi, graniglia).
Per lo stesso motivo, nello stoccaggio e nella movimentazione dell’acciaio inossidabile, deve essere evitato qualsiasi contatto con attrezzi di acciaio al carbonio, ad esempio forche di elevatori, catene, scaffalature, ecc.
Per verificare la avvenuta contaminazione esistono appositi test.
Una volta contaminato l'acciaio inox, può esserne effettuata la decontaminazione mediante trattamento con specifiche paste passivanti a base di acido fosforico o nitrico.
Per rimuovere qualunque traccia di soluzione acida e contaminanti disciolti si dovrà risciacquare l'acciaio con acqua deionizzata e asciugare la parte pulita.
In questo caso è necessario trattare l’intera superficie inox, per evitare l’effetto "a chiazze".
Gli stessi prodotti possono essere utilizzati nel caso di ossidazione dovuta ad un'elevata esposizione ad agenti corrosivi quali la salsedine.
La contaminazione ferrosa è quella più ricorrente sugli acciai inox, ma si possono comunque verificare fenomeni di contaminazione da altri metalli non ferrosi, come alluminio, rame, piombo, ecc.
Le modalità per eliminare le tracce contaminanti sono le stesse consigliate per le tracce ferrose.

Giunzioni[modifica | modifica sorgente]

I manufatti in acciaio inox vengono frequentemente giuntati mediante saldatura e bullonatura.
Un errore comune è quello di utilizzare elettrodi contenenti acciaio al carbonio e bulloni, sempre in acciaio al carbonio ma zincati.
Oltre al problema della contaminazione ferrosa, il mettere a contatto l'acciaio inox con un materiale meno nobile determina l'innesco di celle galvaniche, nel momento in cui un elettrolita entra in gioco, con conseguente corrosione del materiale meno nobile.

Normativa di riferimento[modifica | modifica sorgente]

  • UNI EN 10088-1:2005 - Acciai inossidabili - Parte 1: Lista degli acciai inossidabili
  • ASTM A-967 - Standard specification for chemical passivation treatments of stainless steel parts

Note[modifica | modifica sorgente]

  1. ^ Tabelle proprietà fisiche dei metalli
  2. ^ Trattamenti superficiali per aumentare la resistenza alla corrosione della posateria da tavola e più in generale della coltelleria, anche ad uso professionale, da cucina
  3. ^ All'interno di questo campo, infatti, si osserva dal diagramma ferro-cromo, che l'acciaio dalla temperatura ambiente a quella di fusione rimane sempre in fase ferritica
  4. ^ MOGS, profili e sistemi per serramenti in acciaio, acciaio inox, corten, ferrofinestra, taglio termico, Milano, Roma, Firenze, Treviso

Bibliografia[modifica | modifica sorgente]

Voci correlate[modifica | modifica sorgente]

Altri progetti[modifica | modifica sorgente]

Collegamenti esterni[modifica | modifica sorgente]