2,2-dibromo-2-cianoacetammide

Da Wikipedia, l'enciclopedia libera.
Vai alla navigazione Vai alla ricerca
2,2-Dibromo-2-cianoacetammide
Abbreviazioni
DBNPA
Caratteristiche generali
Formula bruta o molecolareC3H2Br2N2O
Peso formula (u)241,87 g/mol
Numero CAS10222-01-2
Numero EINECS233-539-7
PubChem25059
SMILES
C(#N)C(C(=O)N)(Br)Br
Proprietà chimico-fisiche
Costante di dissociazione acida (pKa) a {{{Ka_temperatura}}} K8,3 + 0,3
Solubilità in acqua10,8 g/l (pH 5) a 10°C, 14,4 g/l (pH 5) a 20°C, 20,2 g/l (pH 5) a 30°C, 11,5 g/l (pH 7) a 10°C, 14,1 g/l (pH 7) a 20°C, 18,6 g/l (pH 7) a 30°C, 19,9 g/l (pH 9) a 20°C
Coefficiente di ripartizione 1-ottanolo/acqua0.8 (pH 5), 0.8 (pH 7), 0.82 (pH 9) a 20 – 21°C
Temperatura di fusione122 - 125 °C
Indicazioni di sicurezza
Simboli di rischio chimico
Corrosivo Irritante

Il 2,2-dibromo-2-cianoacetammide (DBNPA) è un disinfettante e battericida utilizzato per la pulizia delle superfici che vengono a contatto con gli alimenti e i mangimi per animali, in particolare le navi e i macchinari.[1]

Caratteristiche strutturali e fisiche[modifica | modifica wikitesto]

L'International Chemical Identifier del composto è: InChl=1S/C3H2Br2N2O/c4-3(5,1-6)2(7)8/h(H2,7,8)

La sua massa monoisotopica è pari a 239,85339 g/mol. L'area superficiale accessibile risulta pari a 66,9 Ų e l'heavy atom count è pari a 8. Il composto è neutro e il numero di unità legate mediante legame covalente è uno.

Il composto presenta un donatore e due accettori di legami a idrogeno. Presenta un singolo legame attorno al quale la molecola può ruotare.

Si presenta come solido idrofilo biancastro o liquido da incolore a giallastro con un'odore pungente.

Si decompone a 190 °C producendo fumi tossici contenenti Br(-) e ossidi di azoto.[2]

La costante della legge di Henry per il composto è pari a 2,04 x 10-5 Pa m3 mol-1 ad una temperatura di 20°C e pH 7.[1]

La sua tensione superficiale è pari a 72,2 ± 0.6 mN ∙ m-1 a 25,0 ± 0,5 °C.[3]

Sintesi del composto[modifica | modifica wikitesto]

Il composto viene sintetizzato mediante alogenazione catalizzata da acidi della cianoacetammide.[2]

Reattività e caratteristiche chimiche[modifica | modifica wikitesto]

La pressione di vapore è pari a 9*10-4 mmHg a 25°C e il pH a 25°C in soluzione acquosa è 6,61. La sua costante di dissociazione a 21°C è pari a 2,375.

La sua solubilità è pari a:

Il composto risulta stabile in condizioni normali, ma la sua decomposizione è accelerata da luce e calore. Il composto risulta corrosivo per l'acciaio dolce, il ferro e l'alluminio.[2]

Il composto reagisce violentemente con agenti ossidanti forti.[4]

Tossicologia[modifica | modifica wikitesto]

Il composto:[2][5][4]

Tossicocinetica[modifica | modifica wikitesto]

Studi effettuati sui ratti non evidenziano bioaccumulazione. Dopo la somministrazione orale, il composto viene rapidamente ed efficacemente assorbito ed eliminato. La maggior parte viene eliminato dopo un giorno (>85%) principalmente attraverso le urine. Il composto è pertanto considerato quasi completamente biodisponibile. Si ritiene che sia equamente distribuito attraverso la circolazione sanguigna a tutti gli organi e i tessuti.[1][3]

Genotossicità[modifica | modifica wikitesto]

Non vi sono evidenze che il composto sia potenzialmente mutageno.[3]

Cancerogenicità[modifica | modifica wikitesto]

Il composto non risulta carcinogeno.[3]

Applicazioni[modifica | modifica wikitesto]

Viene utilizzato come:[2]

Impatto ambientale[modifica | modifica wikitesto]

Se rilasciato nell'ambiente viene degradato immediatamente seguendo due principali vie metaboliche basate sulle proprietà chimiche del composto:[1]

  • reazione nucleofila (qualora la sostanza entri in contatto con nucleofili, con materiale organico o sia esposta alla luce)


In caso di degradazione abiotica l'emivita si attesta a 578 ore (50°C e pH 4), 65 ore (25°C e pH 7) e 5,2 ore (13°C e pH 9). In ambiente acquatico il composto non risulta soggetto a fotodegradazione, ma vi sono indicazioni che sia soggetto a fotolisi indiretta. Se sottoposto al contatto con l'aria l'emivita si attesta a 8,022 giorni mentre l'emivita nel suolo è pari a 4 - 25 ore (degradazione primaria) con pH 4.8 - 7.5 e a temperatura ambiente.

I valori PNEC del composto sono:[1]

  • ambiente acquatico: 6 µg DBNPA/l
  • STP: 46 µg DBNPA/l
  • suolo: 50,46 µg/kg (peso del suolo umido)

Note[modifica | modifica wikitesto]

  1. ^ a b c d e (EN) ECHA, 2,2-Dibromo-2-cyanoacetamide (DBNPA) - Assessment report - Summary of the Active Substance, agosto 2019. URL consultato il 20 aprile 2024.
  2. ^ a b c d e (EN) PubChem, 2,2-Dibromo-2-cyanoacetamide, su pubchem.ncbi.nlm.nih.gov. URL consultato il 21 aprile 2024.
  3. ^ a b c d ECHA, 2,2-Dibromo-2-cyanoacetamide (DBNPA) - Assessment report, Ottobre 2023. URL consultato il 21 aprile 2024.
  4. ^ a b Merck Life Science S.r.l., 2,2-Dibromo-2-cianoacetammide - Scheda dati di sicurezza, 28 giugno 2023. URL consultato il 21 aprile 2024.
  5. ^ Substance Information - ECHA, su echa.europa.eu. URL consultato il 21 aprile 2024.

Bibliografia[modifica | modifica wikitesto]

  • Ali Pourshaban-Shahrestani, Jalal Hassan, Mohammad Kazem Koohi, In Vivo Toxicity of Industrial Biocide Containing 2,2-Dibromo-3-nitrilopropionamide in Adult and Zebrafish Larvae. Bull Environ Contam Toxicol. 2023 Nov 28;112(1):2. doi: 10.1007/s00128-023-03824-3
  • Hoek, E.M.V., Weigand, T.M. & Edalat, A. Reverse osmosis membrane biofouling: causes, consequences and countermeasures. npj Clean Water 5, 45 (2022). DOI
  • Rehab K. Alhajjar, Kayley M. Roche, and Stephen M. Techtmann, Comparative Analysis of the Mechanism of Resistance to Silver Nanoparticles and the Biocide 2,2-Dibromo-3-Nitrilopropionamide. Antimicrob Agents Chemother. 2022 Jun; 66(6): e02031-21. Published online 2022 May 23. doi: 10.1128/aac.02031-21
  • Simpson, J.V., Wiatr, C.L. Quantification and Degradation of 2,2-Dibromo-3-Nitrilopropionamide (DBNPA) in Bioethanol Fermentation Coproducts. World J Microbiol Biotechnol 38, 82 (2022). DOI
  • Tuba Unsal, Di Wang, Pruch Kijkla, Sith Kumseranee, Suchada Punpruk, Magdy E Mohamed, Mazen A Saleh, Tingyue Gu, Food-grade D-limonene enhanced a green biocide in the mitigation of carbon steel biocorrosion by a mixed-culture biofilm consortium. Bioprocess Biosyst Eng. 2022 Apr;45(4):669-678. doi: 10.1007/s00449-021-02685-6. Epub 2022 Jan 8. DOI: 10.1007/s00449-021-02685-6
  • Murthy, P.S. (2022). Antifouling Strategies and Environmental Issues in Industrial Cooling Water Systems in Marine Environment. In: Chakraborty, P., Snow, D. (eds) Legacy and Emerging Contaminants in Water and Wastewater. Emerging Contaminants and Associated Treatment Technologies. Springer, Cham. [1]
  • Møllebjerg, A., Meyer, R.L. (2022). Biofouling Control in Water Filtration Systems. In: Richter, K., Kragh, K.N. (eds) Antibiofilm Strategies. Springer Series on Biofilms, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-031-10992-8_20
  • Consolazio, N., Hakala, J.A., Lowry, G.V. et al. Sorption and transformation of biocides from hydraulic fracturing in the Marcellus Shale: a review. Environ Chem Lett 20, 773–795 (2022). https://doi.org/10.1007/s10311-021-01352-2
  • Maitreya A, Pal S, Qureshi A, Reyed RM, Purohit HJ. Nitric oxide-secreting probiotics as sustainable bio-cleaners for reverse osmosis membrane systems. Environ Sci Pollut Res Int. 2022 Jan;29(4):4911-4929. doi: 10.1007/s11356-021-17289-6. Epub 2021 Nov 19. PMID 34797547.
  • Unsal T, Wang D, Kumseranee S, Punpruk S, Gu T. D-Tyrosine enhancement of microbiocide mitigation of carbon steel corrosion by a sulfate reducing bacterium biofilm. World J Microbiol Biotechnol. 2021 May 20;37(6):103. doi: 10.1007/s11274-021-03072-9. PMID 34013421.
  • Hungerbühler, K., Boucher, J.M., Pereira, C., Roiss, T., Scheringer, M. (2021). Risk Assessment and Management of Chemical Products. In: Chemical Products and Processes. Springer, Cham. https://doi.org/10.1007/978-3-030-62422-4_6
  • Wu, J., Wang, J., Liu, Y., Rao, U. (2021). Basic Principles. In: Hoek, E.M.V., Jassby, D., Kaner, R.B. (eds) Sustainable Desalination and Water Reuse. Synthesis Lectures on Sustainable Development. Springer, Cham. https://doi.org/10.1007/978-3-031-79508-4_2
  • Wagner TV, Helmus R, Quiton Tapia S, Rijnaarts HHM, de Voogt P, Langenhoff AAM, Parsons JR. Non-target screening reveals the mechanisms responsible for the antagonistic inhibiting effect of the biocides DBNPA and glutaraldehyde on benzoic acid biodegradation. J Hazard Mater. 2020 Mar 15;386:121661. doi: 10.1016/j.jhazmat.2019.121661. Epub 2019 Nov 10. PMID 31740302.
  • Omran, B.A., Abdel-Salam, M.O. (2020). The Catastrophic Battle of Biofouling in Oil and Gas Facilities: Impacts, History, Involved Microorganisms, Biocides and Polymer Coatings to Combat Biofouling. In: A New Era for Microbial Corrosion Mitigation Using Nanotechnology. Advances in Material Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-49532-9_2
  • Polman, H.J.G., Jenner, H.A., Bruijs, M.C.M. (2020). Technologies for Biofouling Control and Monitoring in Desalination. In: Saji, V.S., Meroufel, A.A., Sorour, A.A. (eds) Corrosion and Fouling Control in Desalination Industry. Springer, Cham. https://doi.org/10.1007/978-3-030-34284-5_16
  • Campa MF, Techtmann SM, Ladd MP, Yan J, Patterson M, Garcia de Matos Amaral A, Carter KE, Ulrich N, Grant CJ, Hettich RL, Lamendella R, Hazen TC. Surface Water Microbial Community Response to the Biocide 2,2-Dibromo-3-Nitrilopropionamide, Used in Unconventional Oil and Gas Extraction. Appl Environ Microbiol. 2019 Oct 16;85(21):e01336-19. doi: 10.1128/AEM.01336-19. PMID 31444200; PMCID: PMC6803298.
  • Reynolds-Clausen K, Surridge-Talbot K, Botes M, Eugene Cloete T. Bacterial species diversity as an indicator of dibromonitrilopropionamide (DBNPA) biocide efficacy. Water Sci Technol. 2018 Aug;78(1-2):320-328. doi: 10.2166/wst.2018.289. PMID 30101767.
  • de Castro Schwab, M., Cammarota, M.C. Composition and treatment of effluent from shale gas production. Clean Techn Environ Policy 20, 1245–1257 (2018). https://doi.org/10.1007/s10098-018-1549-8
  • Bajpai, P. (2018). Slime Control. In: Biotechnology for Pulp and Paper Processing. Springer, Singapore. https://doi.org/10.1007/978-981-10-7853-8_17
  • Kavitha S, Khambhaty Y, Chandra Babu NK. Evaluation of Industrial Biocides on a Novel Aspergillus versicolor TANCK-1 and Elucidation of Their Probable Biocidal Mechanism. Indian J Microbiol. 2018 Mar;58(1):51-59. doi: 10.1007/s12088-017-0696-7. Epub 2017 Dec 9. PMID 29434397; PMCID: PMC5801185.
  • Vikram A, Lipus D, Bibby K. Metatranscriptome analysis of active microbial communities in produced water samples from the Marcellus Shale. Microb Ecol. 2016 Oct;72(3):571-81. doi: 10.1007/s00248-016-0811-z. Epub 2016 Jul 25. PMID 27457653.
  • Karahan Ozgun, O., Basak, B., Eropak, C. et al. Prioritization methodology of dangerous substances for water quality monitoring with scarce data. Clean Techn Environ Policy 19, 105–122 (2017). https://doi.org/10.1007/s10098-016-1194-z
  • Ahmad, K., Ismail, S.I. (2016). Enhanced Nutritional Programme: An Innovative Approach to Controlling Plant Diseases in the Tropics. In: Hakeem, K., Akhtar, M., Abdullah, S. (eds) Plant, Soil and Microbes. Springer, Cham. https://doi.org/10.1007/978-3-319-27455-3_12
  • Díaz-Flores Á, Montero JC, Castro FJ, Alejandres EM, Bayón C, Solís I, Fernández-Lafuente R, Rodríguez G. Comparing methods of determining Legionella spp. in complex water matrices. BMC Microbiol. 2015 Apr 29;15:91. doi: 10.1186/s12866-015-0423-7. PMID 25925400; PMCID: PMC4436101.
  • Lindholm-Lehto PC, Knuutinen JS, Ahkola HS, Herve SH. Refractory organic pollutants and toxicity in pulp and paper mill wastewaters. Environ Sci Pollut Res Int. 2015 May;22(9):6473-99. doi: 10.1007/s11356-015-4163-x. Epub 2015 Feb 4. PMID 25647495.
  • Shiroma LS, Marques TT, Jesus DP. A rapid and simple capillary electrophoresis method for indirect determination of the biocide 2,2-dibromo-3-nitrilo-propionamide (DBNPA) in cooling waters. Water Sci Technol. 2015;71(3):434-9. doi: 10.2166/wst.2015.009. PMID 25714644.
  • Wang, R., Hsiao, B.S., Chu, B. (2014). Electrospun Nanofibrous Membranes for Liquid Filtration. In: Ding, B., Yu, J. (eds) Electrospun Nanofibers for Energy and Environmental Applications. Nanostructure Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54160-5_13
  • Riedl, J., Rotter, S., Faetsch, S. et al. Proposal for applying a component-based mixture approach for ecotoxicological assessment of fracturing fluids. Environ Earth Sci 70, 3907–3920 (2013). https://doi.org/10.1007/s12665-013-2320-4
  • Hentz, M. Rapid and long-term effect. Adhes Adhes Sealants 10, 23–25 (2013). https://doi.org/10.1365/s35784-013-0204-3
  • Rajagopal, S., Jenner, H.A., Venugopalan, V.P., Khalanski, M. (2012). Biofouling Control: Alternatives to Chlorine. In: Rajagopal, S., Jenner, H., Venugopalan, V. (eds) Operational and Environmental Consequences of Large Industrial Cooling Water Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1698-2_10
  • Chen F. The chronic aquatic toxicity of a microbicide dibromonitrilopropionamide. Toxicol Ind Health. 2012 Mar;28(2):181-5. doi: 10.1177/0748233711410904. Epub 2011 Sep 21. PMID 21937531.
  • Senoh A, Tokuyama Y, Nakayama Y, Fujii K, Iwatsuki K. Erythema multiforme-like contact reaction due to liquid-formulated 2,2-dibromo-3-nitrilopropionamide: involvement of cytotoxic T-lymphocyte reaction. Clin Exp Dermatol. 2009 Dec;34(8):e732-6. doi: 10.1111/j.1365-2230.2009.03455.x. Epub 2009 Jul 29. PMID 19663849.
  • Latorre, A., Rigol, A., Lacorte, S., Barceló, D. Organic Compounds in Paper Mill Wastewaters. In: Barceló, D. (eds) Water Pollution. The Handbook of Environmental Chemistry, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b98606

Collegamenti esterni[modifica | modifica wikitesto]

Voci correlate[modifica | modifica wikitesto]

  Portale Chimica: il portale della scienza della composizione, delle proprietà e delle trasformazioni della materia