Supercarica

Da Wikipedia, l'enciclopedia libera.

In fisica teorica, una supercarica è un generatore di una trasformazione di supersimmetria[1]. Le supercariche (generalmente indicate con il simbolo Q) sono operatori che trasformano stati bosonici in stati fermionici e viceversa. Dal momento che le supercariche trasformano stati con spin semi-intero in stati con spin intero e viceversa, esse hanno carattere fermionico e pertanto sono rappresentate da operatori spinoriali[2].

Relazione di commutazione[modifica | modifica sorgente]

Le supercariche commutano con l'operatore Hamiltoniana H [3]:

[ Q , H ] = 0 .

La teoria della supersimmetria[modifica | modifica sorgente]

Exquisite-kfind.png Per approfondire, vedi Supersimmetria.

Alcune coppie

Particella Spin Partner Spin
Elettrone \tfrac{1}{2} Selettrone 0
Quark \tfrac{1}{2} Squark 0
Neutrino \tfrac{1}{2} Sneutrino 0
Gluone 1 Gluino \tfrac{1}{2}
Fotone 1 Fotino \tfrac{1}{2}
Bosone W 1 Wino (particella) \tfrac{1}{2}
Bosone Z 1 Zino \tfrac{1}{2}
Gravitone 2 Gravitino \tfrac{3}{2}

Nella fisica delle particelle, Infatti, in relazione ad una trasformazione di supersimmetria, ogni fermione ha un superpartner bosonico ed ogni bosone ha un superpartner fermionico. Le coppie sono state battezzate partner supersimmetrici, e le nuove particelle vengono chiamate appunto spartner, superpartner, o sparticelle [4]. Più precisamente, il superpartner di una particella con spin s ha spin

s-\frac{1}{2}

alcuni esempi sono illustrati nella tabella. Nessuna di esse è stata fino ad ora individuata sperimentalmente, ma si spera che il Large Hadron Collider del CERN di Ginevra possa assolvere a questo compito a partire dal 2010, dopo essere stato rimesso in funzione nel novembre 2009[5]. Infatti per il momento ci sono esclusivamente prove indirette dell'esistenza della supersimmetria. Siccome i superpartners delle particelle del Modello Standard non sono ancora stati osservati, la supersimmetria, se esiste, deve necessariamente essere una simmetria rotta così da permettere che i superpartners possano essere più pesanti delle corrispondenti particelle presenti nel Modello Standard.

La carica associata (ossia il generatore) di una trasformazione di supersimmetria viene detta supercarica.

La teoria spiega alcuni problemi insoluti che affliggono il modello standard ma purtroppo ne introduce altri. Essa è stata sviluppata negli anni '70 dal gruppo di ricercatori di Jonathan I. Segal presso il MIT; contemporaneamente Daniel Laufferty della “Tufts University” ed i fisici teorici sovietici Izrail' Moiseevič Gel'fand e Likhtman hanno teorizzato indipendentemente la supersimmetria [6]. Sebbene nata nel contesto delle teorie delle stringhe, la struttura matematica della supersimmetria è stata successivamente applicata con successo ad altre aree della fisica, dalla meccanica quantistica alla statistica classica ed è ritenuta parte fondamentale di numerose teorie fisiche.

Nella teoria delle stringhe la supersimmetria ha come conseguenza che i modi di vibrazione delle stringhe che danno origine a fermioni e bosoni si presentano obbligatoriamente in coppie.

I bosoni di gauge[modifica | modifica sorgente]

Exquisite-kfind.png Per approfondire, vedi Bosoni di gauge.

In fisica delle particelle, i bosoni di gauge sono particelle elementari che hanno il compito di trasportare le forze fondamentali della Natura.

In particolare, le particelle elementari, le cui interazioni sono descritte dalla teoria di gauge, esercitano forze su ogni altra particella mediante lo scambio di bosoni di gauge.

Nel modello standard ci sono tre tipi di bosoni di gauge: i fotoni, i gluoni e i cosiddetti "bosoni deboli", cioè i bosoni W e Z (anche detti più precisamente "bosoni vettori intermedi W e Z"). Questi tre tipi di bosoni sono tutti bosoni vettori, noti anche come bosoni vettori intermedi, e sono i responsabili delle tre forze principali, rispettivamente in ordine: Forza elettromagnetica, Forza nucleare forte, Forza nucleare debole. I fotoni sono i bosoni di gauge delle interazioni elettromagnetiche (forza elettromagnetica), i gluoni sono i bosoni delle interazioni forti (forza forte), e i bosoni W e Z sono i bosoni delle interazioni deboli (forza debole).

Note[modifica | modifica sorgente]

  1. ^ Supergauge Transformations.
  2. ^ Weinberg Steven, The Quantum Theory of Fields, Volume 3: Supersymmetry, Cambridge University Press, Cambridge (1999). ISBN 0-521-66000-9.
  3. ^ Introducing supersymmetry, M. F. Sohnius, 1985
  4. ^ A Supersymmetry Primer, S. Martin, 1999
  5. ^ (ENFR) The LHC is back. URL consultato il 12 aprile 2010.
  6. ^ Weinberg Steven, The Quantum Theory of Fields, Volume 3: Supersymmetry, Cambridge University Press, Cambridge (1999). ISBN 0-521-66000-9.

Voci correlate[modifica | modifica sorgente]

Bibliografia[modifica | modifica sorgente]

  • Junker G. Supersymmetric Methods in Quantum and Statistical Physics, Springer-Verlag (1996).
  • Kane G. L., Shifman M., The Supersymmetric World: The Beginnings of the Theory World Scientific, Singapore (2000). ISBN 981-02-4522-X.
  • Weinberg Steven, The Quantum Theory of Fields, Volume 3: Supersymmetry, Cambridge University Press, Cambridge (1999). ISBN 0-521-66000-9.
  • Wess, Julius, and Jonathan Bagger, Supersymmetry and Supergravity, Princeton University Press, Princeton, (1992). ISBN 0-691-02530-4.
  • Bennett GW, et al; Muon (g−2) Collaboration, Measurement of the negative muon anomalous magnetic moment to 0.7 ppm in Physical Review Letters, vol. 92, nº 16, 2004, p. 161802, DOI:10.1103/PhysRevLett.92.161802, PMID 15169217.
  • (EN) Cooper F., A. Khare, U. Sukhatme. Supersymmetry in Quantum Mechanics, Phys. Rep. 251 (1995) 267-85 (arXiv:hep-th/9405029).
  • (EN) D.V. Volkov, V.P. Akulov, Pisma Zh.Eksp.Teor.Fiz. 16 (1972) 621; Phys. Lett. B46 (1973) 109.
  • (EN) V.P. Akulov, D.V. Volkov, Teor.Mat.Fiz. 18 (1974) 39.

Collegamenti esterni[modifica | modifica sorgente]

fisica Portale Fisica: accedi alle voci di Wikipedia che trattano di fisica