Teoria delle superstringhe

Da Wikipedia, l'enciclopedia libera.
Teoria delle stringhe
Dualità
T-dualità · S-dualità · U-dualità
Fisica
Glossario Fisico
Calendario degli eventi
Portale e Progetto Fisica

In fisica moderna la teoria delle superstringhe è una teoria del tutto ovvero un tentativo di spiegare tutte le particelle e le forze fondamentali della natura in un'unica teoria considerando queste entità come vibrazioni di sottilissime stringhe supersimmetriche.

Introduzione[modifica | modifica sorgente]

La teoria delle superstringhe (super perché supersimmetriche) spiega a livello teorico:

  • l'esistenza dei gravitoni
  • il perché della presenza delle tre famiglie di particelle
  • perché ogni famiglia di particelle abbia certe proprietà e non altre

Le proprietà di cui si parla sono:

Essa è considerata una delle più promettenti teorie della gravità quantistica. Il termine di teoria delle superstringhe è in realtà una contrazione del termine più corretto di "teoria supersimmetrica delle stringhe" perché diversamente dalla teoria bosonica delle stringhe, è la versione della teoria delle stringhe che include i fermioni e la supersimmetria. Non ci sono fino a questo momento predizioni quantitative sperimentali che possano essere verificate (o falsificate).[1][2]

Al momento il problema più importante della fisica teorica consiste nell'armonizzare la relatività generale, che descrive la gravità e viene applicata al macrocosmo (stelle, galassie, ammassi), con la meccanica quantistica che descrive le altre tre forze fondamentali che descrivono il microcosmo (elettroni, fotoni, quark).

Lo sviluppo di una teoria quantistica dei campi riguardanti una forza fornisce invariabilmente probabilità infinite (e quindi prive di utilità). I fisici teorici hanno sviluppato una tecnica matematica detta rinormalizzazione che elimina questi infiniti che si trovano nell'elettromagnetismo, nella interazione nucleare forte e nell'interazione nucleare debole, ma non quelli che si trovano nella gravità (senza introdurre un numero infinito di termini alla definizione Lagrangiana della teoria, rischiando la località, o altrimenti un numero finito di termini che non rispettano l'invarianza di Lorentz). Quindi lo sviluppo di una teoria quantistica della gravità deve essere espressa in maniera differente rispetto alle teorie che riguardano le altre forze della natura.

L'idea che sta alla base della teoria è che i costituenti fondamentali della realtà sono "stringhe" o "corde" di lunghezza pari a quella di Planck (1,616x10−35 m) che vibrano a frequenze diverse. Il gravitone, la particella proposta quale mediatrice della gravità, per esempio, è descritta dalla teoria come una stringa che vibra con ampiezza d'onda uguale a zero. Questa particella nasce dalle oscillazioni nello spazio di una stringa chiusa; l'elisione di componenti energetiche sui vari piani di vibrazione rende possibile sia l'esistenza di particelle con massa nulla (ad esempio fotoni) che di particelle dotate di massa non nulla ed in cui alcune componenti energetiche non si elidono.

Un'altra condizione prevista dalla teoria è che non vi sono differenze misurabilmente riscontrabili tra stringhe che si "accartocciano" intorno a dimensioni più piccole di loro stesse e quelle che si muovono lungo dimensioni più grandi (cioè, gli effetti in una dimensione di grandezza R sono uguali a quelli in una dimensione di grandezza 1/R). Le singolarità sono evitate in virtù del fatto che le conseguenze che si potrebbero osservare in un Big Crunch non raggiungono mai lo zero. Infatti, se l'universo dovesse iniziare un processo di contrazione tipo il Big Crunch, la teoria delle stringhe ci dice che l'universo non potrebbe mai diventare più piccolo delle dimensioni di una stringa e che a quel punto dovrebbe iniziare ad espandersi.

Numero delle dimensioni[modifica | modifica sorgente]

Il nostro spazio fisico possiede solo 4 dimensioni apprezzabili alla nostra scala di grandezza e di ciò bisogna sempre tenere conto in qualsiasi teoria fisica; tuttavia, nulla vieta di per sé che una teoria affermi che vi sono delle dimensioni spaziali aggiuntive. Nel caso della teoria delle stringhe, vi sono evidenze secondo cui lo spazio-tempo richiede 10, 11 o addirittura 26 dimensioni. Il conflitto tra i dati osservati e la proposta teorica viene risolto postulando che le dimensioni aggiuntive siano "arrotolate su se stesse" o meglio compattificate. Il modello a 6 dimensioni di Calabi-Yau può giustificare le dimensioni addizionali richieste dalla teoria delle superstringhe.

La nostra mente trova difficile "visualizzare" queste dimensioni perché noi possiamo muoverci soltanto in uno spazio a tre dimensioni. Un metodo per superare questo limite è quello di non tentare di visualizzare le dimensioni aggiuntive, bensì di pensare ad esse come numeri addizionali nelle equazioni che descrivono come il mondo è fatto. Ciò apre la questione se questi "numeri extra" possano essere osservati direttamente mediante esperimenti. Questo, a sua volta, pone la questione se i modelli che derivano da questi calcoli astratti possano essere considerati "scientifici", in quanto fino ad ora pare non sia possibile dimostrarli con esperimenti, dato che con la fisica conosciuta oggi gli apparati sperimentali dovrebbero essere grandi oltre l'immaginabile (sarebbero necessari acceleratori di particelle grandi più o meno quanto la nostra galassia).

La teoria delle superstinghe non è la prima teoria a più dimensioni proposta (vedi la teoria di Kaluza-Klein). La moderna teoria delle stringhe si basa sulla matematica delle pieghe, dei nodi e della topologia che è stata largamente sviluppata dopo Kaluza e Klein e che ha permesso negli ultimi tempi che le teorie fisiche fondate su dimensioni extra fossero molto più credibili di quanto lo fossero ai tempi di Kaluza e Klein.

Numero delle teorie delle superstringhe[modifica | modifica sorgente]

I fisici teorici sono stati molto preoccupati dal fatto che esistessero 5 differenti teorie delle superstringhe. Questo problema è stato risolto dalla cosiddetta "seconda rivoluzione delle superstringhe" avvenuta negli anni novanta durante i quali si è scoperto che le 5 teorie sono in realtà 5 diversi aspetti di una teoria ancora più basilare: la M-teoria.

Teorie delle stringhe
Tipo Dimensioni spazio-temporali
Dettagli
Bosonica 26 Solo bosoni, nessun fermione significa solo forze, niente materia, sia con stringhe aperte che chiuse; una particella con massa immaginaria chiamata tachione
I 10 Supersimmetria tra forze e materia, sia con stringhe aperte che chiuse, no tachioni, gruppo di simmetria SO(32)
IIA 10 Supersimmetria tra forze e materia, solo con stringhe chiuse, no tachioni, no fermioni privi di massa con entrambe gli spin (nonchirali)
IIB 10 Supersimmetria tra forze e materia solo con stringhe chiuse, no tachioni, no fermioni privi di massa con spin solo in una direzione (chirali)
HO 10 Supersimmetria tra forze e materia, solo con stringhe chiuse, no tachioni, eterotica, che significa che le stringhe con movimento destro e movimento sinistro differiscono, il gruppo di simmetria è SO(32)
HE 10 Supersimmetria tra forze e materia, solo con stringhe chiuse, no tachioni, eterotica, che significa che le stringhe con movimento destro e movimento sinistro differiscono, il gruppo di simmetria è E8×E8

Le cinque teorie delle superstringhe sono:

  • La teoria delle stringhe Tipo I ha una supersimmetria in senso deca-dimensionale (16 supercariche). Questa teoria è particolare in quanto si basa su stringhe non orientate aperte e chiuse, mentre le altre sono basate su stringhe orientate chiuse.
  • La teoria delle stringhe Tipo II ha due supersimmetrie in senso deca-dimensionale (32 supercariche). Vi sono attualmente due tipi di strighe tipo II chiamate tipo IIA e tipo IIB. Differiscono tra di loro per il fatto che la teoria IIA è di tipo non-chirale (parità conservate) mentre la IIB è di tipo chirale (parità violata).
  • Le teorie delle stringhe eterotiche sono basate su un ibrido particolare di superstringa tipo I e stringa bosonica. Vi sono due tipi di stringhe eterotiche che differiscono riguardo al gruppo di gauge deca-dimensionale: la stringa eterotica E8×E8 e la stringa eterotica SO(32). (Il nome di eterotica SO(32) è lievemente impreciso riguardo ai gruppi di Lie SO(32) perché la teoria dà origine ad un quoziente di Spin(32)/Z2 che non è equivalente a SO(32).)

Le teorie di gauge chirali possono essere inconsistenti a causa di anomalie. Queste accadono quando certi diagrammi di Feynman a un loop determinano una rottura della simmetria di gauge nei loro effetti quantistici.

Note[modifica | modifica sorgente]

  1. ^ "NOVA - The elegant Universe"
  2. ^ Jim Holt, "Unstrung", The New Yorker, October 2, 2006

Voci correlate[modifica | modifica sorgente]

Collegamenti esterni[modifica | modifica sorgente]

Fisica Portale Fisica: accedi alle voci di Wikipedia che trattano di Fisica