Organismo modello: differenze tra le versioni

Da Wikipedia, l'enciclopedia libera.
Vai alla navigazione Vai alla ricerca
Contenuto cancellato Contenuto aggiunto
→‎Vertebrati: ins. ref.
Riga 101: Riga 101:
==== [[Vertebrati]] ====
==== [[Vertebrati]] ====
[[File:Souris.jpg|thumb|150px|right|''[[Topo|Mus musculus]]'']]
[[File:Souris.jpg|thumb|150px|right|''[[Topo|Mus musculus]]'']]
:* [[Topo|''Mus musculus'']]<ref name="Anderson-2003">{{Cite journal | last1 = Anderson | first1 = KV. | last2 = Ingham | first2 = PW. | title = The transformation of the model organism: a decade of developmental genetics. | journal = Nat Genet | volume = 33 Suppl | issue = | pages = 285-93 | month = Mar | year = 2003 | doi = 10.1038/ng1105 | PMID = 12610538 }}</ref> - il topo, [[modello animale]] più utilizzato nella ricerca biomedica. Ne esistono numerose linee [[inbred]]:<ref name="Sasado-2010">{{Cite journal | last1 = Sasado | first1 = T. | last2 = Tanaka | first2 = M. | last3 = Kobayashi | first3 = K. | last4 = Sato | first4 = T. | last5 = Sakaizumi | first5 = M. | last6 = Naruse | first6 = K. | title = The National BioResource Project Medaka (NBRP Medaka): an integrated bioresource for biological and biomedical sciences. | journal = Exp Anim | volume = 59 | issue = 1 | pages = 13-23 | month = | year = 2010 | doi = | PMID = 20224166 }}</ref><ref name="Fortier-2010">{{Cite journal | last1 = Fortier | first1 = JM. | last2 = Graubert | first2 = TA. | title = Murine models of human acute myeloid leukemia. | journal = Cancer Treat Res | volume = 145 | issue = | pages = 183-96 | month = | year = 2010 | doi = 10.1007/978-0-387-69259-3_11 | PMID = 20306252 }}</ref><ref name="Zhang-2009">{{Cite journal | last1 = Zhang | first1 = B. | last2 = Duan | first2 = Z. | last3 = Zhao | first3 = Y. | title = Mouse models with human immunity and their application in biomedical research. | journal = J Cell Mol Med | volume = 13 | issue = 6 | pages = 1043-58 | month = Jun | year = 2009 | doi = 10.1111/j.1582-4934.2008.00347.x | PMID = 18419795 }}</ref> alcune sono state selezionate per mostrare particolari tratti, spesso di interesse medico, come il peso corporeo, la muscolatura, l'obesità.<ref name="Reed-2003">{{Cite journal | last1 = Reed | first1 = DR. | last2 = Li | first2 = X. | last3 = McDaniel | first3 = AH. | last4 = Lu | first4 = K. | last5 = Li | first5 = S. | last6 = Tordoff | first6 = MG. | last7 = Price | first7 = RA. | last8 = Bachmanov | first8 = AA. | title = Loci on chromosomes 2, 4, 9, and 16 for body weight, body length, and adiposity identified in a genome scan of an F2 intercross between the 129P3/J and C57BL/6ByJ mouse strains. | journal = Mamm Genome | volume = 14 | issue = 5 | pages = 302-13 | month = May | year = 2003 | doi = | PMID = 12856282 }}</ref><ref name="Wolff-2005">{{Cite journal | last1 = Wolff | first1 = GL. | last2 = Whittaker | first2 = P. | title = Dose-response effects of ectopic agouti protein on iron overload and age-associated aspects of the Avy/a obese mouse phenome. | journal = Peptides | volume = 26 | issue = 10 | pages = 1697-711 | month = Oct | year = 2005 | doi = 10.1016/j.peptides.2004.12.033 | PMID = 15982784 }}</ref>
:* [[Topo|''Mus musculus'']] - il topo, [[modello animale]] più utilizzato nella ricerca biomedica. Ne esistono numerose linee [[inbred]]: alcune sono state selezionate per mostrare particolari tratti, spesso di interesse medico, come il peso corporeo, la muscolatura, l'obesità.
:* ''[[Cavia porcellus]]''<ref name="Poirrier-2010">{{Cite journal | last1 = Poirrier | first1 = AL. | last2 = Van den Ackerveken | first2 = P. | last3 = Kim | first3 = TS. | last4 = Vandenbosch | first4 = R. | last5 = Nguyen | first5 = L. | last6 = Lefebvre | first6 = PP. | last7 = Malgrange | first7 = B. | title = Ototoxic drugs: difference in sensitivity between mice and guinea pigs. | journal = Toxicol Lett | volume = 193 | issue = 1 | pages = 41-9 | month = Mar | year = 2010 | doi = 10.1016/j.toxlet.2009.12.003 | PMID = 20015469 }}</ref><ref name="Schwarz-2009">{{Cite journal | last1 = Schwarz | first1 = P. | last2 = Strnad | first2 = P. | last3 = Singer | first3 = N. | last4 = Oswald | first4 = F. | last5 = Ehehalt | first5 = R. | last6 = Adler | first6 = G. | last7 = Kulaksiz | first7 = H. | title = Identification, sequencing, and cellular localization of hepcidin in guinea pig (Cavia porcellus). | journal = J Endocrinol | volume = 202 | issue = 3 | pages = 389-96 | month = Sep | year = 2009 | doi = 10.1677/JOE-09-0191 | PMID = 19553281 }}</ref><ref name="Dumke-2004">{{Cite journal | last1 = Dumke | first1 = R. | last2 = Catrein | first2 = I. | last3 = Herrmann | first3 = R. | last4 = Jacobs | first4 = E. | title = Preference, adaptation and survival of Mycoplasma pneumoniae subtypes in an animal model. | journal = Int J Med Microbiol | volume = 294 | issue = 2-3 | pages = 149-55 | month = Sep | year = 2004 | doi = | PMID = 15493825 }}</ref> - la cavia, usata inizialmente da [[Robert Koch]]<ref name="O'Toole-2010">{{Cite journal | last1 = O'Toole | first1 = R. | title = Experimental models used to study human tuberculosis. | journal = Adv Appl Microbiol | volume = 71 | issue = | pages = 75-89 | month = | year = 2010 | doi = 10.1016/S0065-2164(10)71003-0 | PMID = 20378051 }}</ref><ref name="Möller-2010">{{Cite journal | last1 = Möller | first1 = M. | last2 = de Wit | first2 = E. | last3 = Hoal | first3 = EG. | title = Past, present and future directions in human genetic susceptibility to tuberculosis. | journal = FEMS Immunol Med Microbiol | volume = 58 | issue = 1 | pages = 3-26 | month = Feb | year = 2010 | doi = 10.1111/j.1574-695X.2009.00600.x | PMID = 19780822 }}</ref> e altri [[batteriologia|batteriologi]], è diventata un sinonimo di "animale di laboratorio", per quanto oggi non sia più molto usata dalla ricerca.<ref name="Dumke-2004">{{Cite journal | last1 = Dumke | first1 = R. | last2 = Catrein | first2 = I. | last3 = Herrmann | first3 = R. | last4 = Jacobs | first4 = E. | title = Preference, adaptation and survival of Mycoplasma pneumoniae subtypes in an animal model. | journal = Int J Med Microbiol | volume = 294 | issue = 2-3 | pages = 149-55 | month = Sep | year = 2004 | doi = | PMID = 15493825 }}</ref>
:* ''[[Cavia porcellus]]'' - la cavia, usata inizialmente da [[Robert Koch]] e altri [[batteriologia|batteriologi]], è diventata un sinonimo di "animale di laboratorio", per quanto oggi non sia più molto usata dalla ricerca.
:* ''[[Rattus norvegicus]]''<ref name="Iessi-2010">{{Cite journal | last1 = Iessi | first1 = IL. | last2 = Bueno | first2 = A. | last3 = Sinzato | first3 = YK. | last4 = Taylor | first4 = KN. | last5 = Rudge | first5 = MV. | last6 = Damasceno | first6 = DC. | title = Evaluation of neonatally-induced mild diabetes in rats: Maternal and fetal repercussions. | journal = Diabetol Metab Syndr | volume = 2 | issue = 1 | pages = 37 | month = | year = 2010 | doi = 10.1186/1758-5996-2-37 | PMID = 20529353 }}</ref><ref name="Dwinell-2009">{{Cite journal | last1 = Dwinell | first1 = MR. | last2 = Worthey | first2 = EA. | last3 = Shimoyama | first3 = M. | last4 = Bakir-Gungor | first4 = B. | last5 = DePons | first5 = J. | last6 = Laulederkind | first6 = S. | last7 = Lowry | first7 = T. | last8 = Nigram | first8 = R. | last9 = Petri | first9 = V. | title = The Rat Genome Database 2009: variation, ontologies and pathways. | journal = Nucleic Acids Res | volume = 37 | issue = Database issue | pages = D744-9 | month = Jan | year = 2009 | doi = 10.1093/nar/gkn842 | PMID = 18996890 }}</ref><ref name="Sedý-2009">{{Cite journal | last1 = Sedý | first1 = J. | last2 = Zicha | first2 = J. | last3 = Kunes | first3 = J. | last4 = Jendelová | first4 = P. | last5 = Syková | first5 = E. | title = Rapid but not slow spinal cord compression elicits neurogenic pulmonary edema in the rat. | journal = Physiol Res | volume = 58 | issue = 2 | pages = 269-77 | month = | year = 2009 | doi = | PMID = 18380532 }}</ref> - il ratto, ampiamente usato come modello animale in [[tossicologia]]<ref name="Cohen-2006">{{Cite journal | last1 = Cohen | first1 = SM. | last2 = Arnold | first2 = LL. | last3 = Eldan | first3 = M. | last4 = Lewis | first4 = AS. | last5 = Beck | first5 = BD. | title = Methylated arsenicals: the implications of metabolism and carcinogenicity studies in rodents to human risk assessment. | journal = Crit Rev Toxicol | volume = 36 | issue = 2 | pages = 99-133 | month = Feb | year = 2006 | doi = | PMID = 16736939 }}</ref>; molto utile come modello neurologico e come fonte di [[coltura primaria|colture primarie]].<ref name="Shaughnessy-2004">{{Cite journal | last1 = Shaughnessy | first1 = L. | last2 = Chamblin | first2 = B. | last3 = McMahon | first3 = L. | last4 = Nair | first4 = A. | last5 = Thomas | first5 = MB. | last6 = Wakefield | first6 = J. | last7 = Koentgen | first7 = F. | last8 = Ramabhadran | first8 = R. | title = Novel approaches to models of Alzheimer's disease pathology for drug screening and development. | journal = J Mol Neurosci | volume = 24 | issue = 1 | pages = 23-32 | month = | year = 2004 | doi = 10.1385/JMN:24:1:023 | PMID = 15314246 }}</ref>
:* ''[[Rattus norvegicus]]'' - il ratto, ampiamente usato come modello animale in [[tossicologia]]; molto utile come modello neurologico e come fonte di [[coltura primaria|colture primarie]].
:* [[Sigmodon hispidus]] <ref name="Nanassy-2010">{{Cite journal | last1 = Nanassy | first1 = L. | last2 = Griffin | first2 = J. | last3 = Emery | first3 = BR. | last4 = Carrell | first4 = DT. | title = The marmoset and cotton rat as animal models for the study of sperm chromatin packaging. | journal = Syst Biol Reprod Med | volume = 56 | issue = 3 | pages = 207-12 | month = Jun | year = 2010 | doi = 10.3109/19396361003653311 | PMID = 20536320 }}</ref>
:* Sigmodon hispidus <!--- [[Cotton rat]] formerly used in polio research-->
Usato nelle ricerche sulla [[poliomielite]]
:* [[Criceto]] <!--- first used to study kala-azar ([[leishmaniasis]])-->
:* [[Criceto]] Usato nelle ricerche sulla [[leismaniosi]]
:* [[Maiale|''Sus'']] - il maiale, modello animale utilizzato per studi pre-clinici di patologie come le retinopatie. Una probabile applicazione futura è quella di modello per ''[[terapia genica|gene therapy]]''.
:* [[Maiale|''Sus'']] - il maiale, modello animale utilizzato per studi pre-clinici di patologie come le retinopatie. Una probabile applicazione futura è quella di modello per ''[[terapia genica|gene therapy]]''.
:* ''[[Canis lupus familiaris]]'' - importante modello dei sistemi respiratorio e cardiovascolare.
:* ''[[Canis lupus familiaris]]'' - importante modello dei sistemi respiratorio e cardiovascolare.

Versione delle 09:22, 21 nov 2010

Caenorhabditis elegans, un tipico organismo modello eucariote.

Un organismo modello è una specie estensivamente studiata per comprendere particolari fenomeni biologici, in base al presupposto che le acquisizioni fatte sull'organismo modello possano fornire indicazioni sugli altri organismi. Ciò è possibile grazie al fatto che i principi biologici fondamentali, come le vie metaboliche, di regolazione e di sviluppo, e i geni che le codificano, si mantengono attraverso l'evoluzione.

Il primo organismo modello impiegato in esperimenti rigorosi per la comprensione dell'ereditarietà è stato il Pisum sativum[1] di Gregor Mendel.[2][3] Il pisello da orto infatti risponde a specifiche esigenze di incrocio controllato, rapido passo generazionale, prole numerosa, caratteri fenotipici alternativi e disponibilità di numerose varietà commerciali. Queste caratteristiche lo resero ottimale per un approccio ai problemi della ereditarietà di tipo quantitativo e statistico.

Spesso, gli organismi modello vengono scelti in base alla loro capacità di essere adattabili a manipolazioni sperimentali. Di solito vengono preferite le seguenti caratteristiche: breve ciclo cellulare, tecniche per manipolazione genetica (ceppi inbred, linee di cellule staminali, e sistemi di transfezione). A volte, il riarrangiamento genetico favorisce il sequenziamento del genoma dell'organismo modello, per esempio, perché è molto compatto o per avere scarsa quantità di DNA non codificante, il cosiddetto "DNA spazzatura" (junk DNA).

Esistono numerosi organismi modello. Il primo organismo modello per la biologia molecolare probabilmente è stato il batterio E.coli, comunemente presente nel sistema digerente umano (e di solito ha attività benefica -- il pericoloso ceppo Escherichia coli O157:H7 è raro). Viene utilizzato anche nello studio di molti batteriofagi, specialmente il fago lambda.

Negli eucarioti sono stati studiati approfonditamente alcuni lieviti, specialmente il Saccharomyces cerevisiae (lievito della birra), soprattutto perché sono facili da gestire. Il ciclo cellulare in un lievito è molto simile al ciclo cellulare negli umani ed è regolato da proteine omologhe. È stato studiato anche il moscerino della frutta Drosophila melanogaster, sempre perché è facile da gestire per essere un organismo multicellulare. Il verme Caenorhabditis elegans è stato studiato perché ha stadi di sviluppo estremamente definiti ed è possibile, quindi, rivelare rapidamente delle anormalità.

Quando i ricercatori cercano un organismo da usare nei loro studi, prendono in considerazione parecchie caratteristiche. Le più comuni sono le dimensioni, il tempo di generazione, l'accessibilità, la manipolazione, la genetica, la conservazione dei meccanismi e un potenziale beneficio economico. Con la diffusione della biologia molecolare comparata, i ricercatori hanno cercato organismi modello che rappresentassero diverse tipologie di vita.

Principali organismi modello

Virus

Procarioti


Eucarioti unicellulari


Eucarioti pluricellulari

Piante

Funghi

Invertebrati

Vertebrati

Mus musculus
 Usato nelle ricerche sulla poliomielite 
  • Criceto Usato nelle ricerche sulla leismaniosi
  • Sus - il maiale, modello animale utilizzato per studi pre-clinici di patologie come le retinopatie. Una probabile applicazione futura è quella di modello per gene therapy.
  • Canis lupus familiaris - importante modello dei sistemi respiratorio e cardiovascolare.
  • Xenopus laevis - un rospo africano, anch'esso molto usato in studi di biologia evolutiva dello sviluppo, soprattutto a causa delle dimensioni ampie delle sue cellule uovo.
  • Takifugu rubipres - noto come pesce palla, ha un genoma molto compatto, con poco junk DNA.
  • Brachydanio rerio - conosciuto come Zebrafish, è un pesce d'acqua dolce molto usato negli acquari. Il suo corpo trasparente, permette una agevole osservazione degli organi interni e, soprattutto, dello sviluppo del sistema cardiovascolare. È anche usato in studi di tossicologia e nella individuazione della funzione di singoli geni.
  • Oryzias latipes - un altro pesce, noto come medaka. Utilizzato anch'esso come modello di sviluppo, soprattutto dell'occhio, ha il vantaggio di essere più resistente di Zebrafish.
  • Gallus gallus - Il pollo è particolarmente impiegato negli studi sullo sviluppo embrionale, in quanto facilmente maneggiabile e a rapido sviluppo.
  • Coturnix coturnix - La quaglia viene utilizzata in esperimenti di embriologia perché presenta cellule colorate che permettono di utilizzarle in esperimenti di trapianto sul pollo.

Organismi modello usati per specifiche ricerche

Selezione e conflitti sessuali

Zone ibride

  • Bombina bombina and variegata
  • Podisma spp. nelle Alpi
  • Caledia captiva (Orthoptera) in Australia

Ecologia genomica

  • Daphnia pulex, un organismo modello di indicatore comportamentale

Tavola genetica degli organismi modello

La tabella indica lo status del Progetto genoma per ciascun organismo, mostrando dell'organismo la ricombinazione omologa e lo stato delle conoscenze delle vie biochimiche dell'organismo.

Organismo Sequenziazione genomica Ricombinazione omologa Biochimica
Procariota
Escherichia coli Si Si Eccellente
Eucariota unicellulare
Dictyostelium discoideum Si Si Eccellente
Saccharomyces cerevisiae Si Si Buono
Schizosaccharomyces pombe Si Si Buono
Chlamydomonas reinhardtii si No Buono
Tetrahymena thermophila Si Si Buono
Eucariota unicellulare
Caenorhabditis elegans Si Sifficoltoso Non così buono
Drosophila melanogaster Si Diffixile Buono
Arabidopsis thaliana Si No Cattivo
Physcomitrella patens Si Si Eccellente
Vertebrato
Danio rerio Si No Buono
Mus musculus Si Si Buono
Xenopus laevis[140] Si
Homo sapiens NB: non è un organismo modello Si Si Buono

Note

  1. ^ Update on the genetic control of flowering in garden pea., in J Exp Bot, vol. 60, n. 9, 2009, pp. 2493-9, DOI:10.1093/jxb/erp120.
  2. ^ The importance of starch biosynthesis in the wrinkled seed shape character of peas studied by Mendel., in Plant Mol Biol, vol. 22, n. 3, Jun 1993, pp. 525-31.
  3. ^ Fisher's contributions to genetics and heredity, with special emphasis on the Gregor Mendel controversy., in Biometrics, vol. 46, n. 4, Dec 1990, pp. 915-24.
  4. ^ [Bacteriophage lambda DNA replication--new discoveries made using an old experimental model], in Postepy Biochem, vol. 52, n. 1, 2006, pp. 42-8.
  5. ^ Methusaleh's Zoo: how nature provides us with clues for extending human health span., in J Comp Pathol, 142 Suppl 1, Jan 2010, pp. S10-21, DOI:10.1016/j.jcpa.2009.10.024.
  6. ^ Patterns of damage in genomic DNA sequences from a Neandertal., in Proc Natl Acad Sci U S A, vol. 104, n. 37, Sep 2007, pp. 14616-21, DOI:10.1073/pnas.0704665104.
  7. ^ Quantifying organismal complexity using a population genetic approach., in PLoS One, vol. 2, n. 2, 2007, pp. e217, DOI:10.1371/journal.pone.0000217.
  8. ^ Quantitative study of Au(III) and Pd(II) ion biosorption on genetically engineered Tobacco mosaic virus., in J Colloid Interface Sci, vol. 342, n. 2, Feb 2010, pp. 455-61, DOI:10.1016/j.jcis.2009.10.028.
  9. ^ From virus research to molecular biology: Tobacco mosaic virus in Germany, 1936-1956., in J Hist Biol, vol. 37, n. 2, 2004, pp. 259-301.
  10. ^ Versatile vectors to study recoding: conservation of rules between yeast and mammalian cells., in Nucleic Acids Res, vol. 23, n. 9, May 1995, pp. 1557-60.
  11. ^ Mechanisms of recombination: lessons from E. coli., in Crit Rev Biochem Mol Biol, vol. 43, n. 6, pp. 347-70, DOI:10.1080/10409230802485358.
  12. ^ Integrative inference of gene-regulatory networks in Escherichia coli using information theoretic concepts and sequence analysis., in BMC Syst Biol, vol. 4, 2010, p. 116, DOI:10.1186/1752-0509-4-116.
  13. ^ Examination of genome homogeneity in prokaryotes using genomic signatures., in PLoS One, vol. 4, n. 12, 2009, pp. e8113, DOI:10.1371/journal.pone.0008113.
  14. ^ The interaction of Bacillus subtilis sigmaA with RNA polymerase., in Protein Sci, vol. 18, n. 11, Nov 2009, pp. 2287-97, DOI:10.1002/pro.239.
  15. ^ Identification of network topological units coordinating the global expression response to glucose in Bacillus subtilis and its comparison to Escherichia coli., in BMC Microbiol, vol. 9, 2009, p. 176, DOI:10.1186/1471-2180-9-176.
  16. ^ High-precision, whole-genome sequencing of laboratory strains facilitates genetic studies., in PLoS Genet, vol. 4, n. 8, 2008, pp. e1000139, DOI:10.1371/journal.pgen.1000139.
  17. ^ MolliGen, a database dedicated to the comparative genomics of Mollicutes., in Nucleic Acids Res, vol. 32, Database issue, Jan 2004, pp. D307-10, DOI:10.1093/nar/gkh114.
  18. ^ Prolyl isomerases in a minimal cell. Catalysis of protein folding by trigger factor from Mycoplasma genitalium., in Eur J Biochem, vol. 267, n. 11, Jun 2000, pp. 3270-80.
  19. ^ A minimal gene set for cellular life derived by comparison of complete bacterial genomes., in Proc Natl Acad Sci U S A, vol. 93, n. 19, Sep 1996, pp. 10268-73.
  20. ^ a b Genetic analysis of trimethylamine N-oxide reductases in the light organ symbiont Vibrio fischeri ES114., in J Bacteriol, vol. 190, n. 17, Sep 2008, pp. 5814-23, DOI:10.1128/JB.00227-08.
  21. ^ Bacterial bioluminescence: organization, regulation, and application of the lux genes., in FASEB J, vol. 7, n. 11, Aug 1993, pp. 1016-22.
  22. ^ CyanoBase: the cyanobacteria genome database update 2010., in Nucleic Acids Res, vol. 38, Database issue, Jan 2010, pp. D379-81, DOI:10.1093/nar/gkp915.
  23. ^ Comparative genomics of NAD biosynthesis in cyanobacteria., in J Bacteriol, vol. 188, n. 8, Apr 2006, pp. 3012-23, DOI:10.1128/JB.188.8.3012-3023.2006.
  24. ^ A novel potassium channel in photosynthetic cyanobacteria., in PLoS One, vol. 5, n. 4, 2010, pp. e10118, DOI:10.1371/journal.pone.0010118.
  25. ^ A modeling and simulation study of siderophore mediated antagonism in dual-species biofilms., in Theor Biol Med Model, vol. 6, 2009, p. 30, DOI:10.1186/1742-4682-6-30.
  26. ^ Using Pseudomonas spp. for Integrated Biological Control., in Phytopathology, vol. 97, n. 2, Feb 2007, pp. 244-9, DOI:10.1094/PHYTO-97-2-0244.
  27. ^ Nitrogen availability to Pseudomonas fluorescens DF57 is limited during decomposition of barley straw in bulk soil and in the barley rhizosphere., in Appl Environ Microbiol, vol. 65, n. 10, Oct 1999, pp. 4320-8.
  28. ^ a b c The BioGRID Interaction Database: 2011 update., in Nucleic Acids Res, Nov 2010, DOI:10.1093/nar/gkq1116.
  29. ^ Discovery of Mutations in Saccharomyces cerevisiae by Pooled Linkage Analysis and Whole Genome Sequencing., in Genetics, Oct 2010, DOI:10.1534/genetics.110.123232.
  30. ^ Sampling the solution space in genome-scale metabolic networks reveals transcriptional regulation in key enzymes., in PLoS Comput Biol, vol. 6, n. 7, 2010, pp. e1000859, DOI:10.1371/journal.pcbi.1000859.
  31. ^ Life with 6000 genes., in Science, vol. 274, n. 5287, Oct 1996, pp. 546, 563-7.
  32. ^ Unconventional effects of UVA radiation on cell cycle progression in S. pombe., in Cell Cycle, vol. 7, n. 5, Mar 2008, pp. 611-22.
  33. ^ Identification and characterization of the Schizosaccharomyces pombe TER1 telomerase RNA., in Nat Struct Mol Biol, vol. 15, n. 1, Jan 2008, pp. 34-42, DOI:10.1038/nsmb1354.
  34. ^ Synthesizing and salvaging NAD: lessons learned from Chlamydomonas reinhardtii., in PLoS Genet, vol. 6, n. 9, 2010, DOI:10.1371/journal.pgen.1001105.
  35. ^ Origin of the polycomb repressive complex 2 and gene silencing by an E(z) homolog in the unicellular alga Chlamydomonas., in Epigenetics, vol. 5, n. 4, May 2010, pp. 301-12.
  36. ^ Flagellar elongation and gene expression in Chlamydomonas reinhardtii., in Eukaryot Cell, vol. 6, n. 8, Aug 2007, pp. 1411-20, DOI:10.1128/EC.00167-07.
  37. ^ Mutation accumulation in Tetrahymena., in BMC Evol Biol, vol. 10, n. 1, Nov 2010, p. 354, DOI:10.1186/1471-2148-10-354.
  38. ^ The two SAS-6 homologs in Tetrahymena thermophila have distinct functions in basal body assembly., in Mol Biol Cell, vol. 20, n. 6, Mar 2009, pp. 1865-77, DOI:10.1091/mbc.E08-08-0838.
  39. ^ Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote., in PLoS Biol, vol. 4, n. 9, Sep 2006, pp. e286, DOI:10.1371/journal.pbio.0040286.
  40. ^ Centromere sequence and dynamics in Dictyostelium discoideum., in Nucleic Acids Res, vol. 37, n. 6, Apr 2009, pp. 1809-16, DOI:10.1093/nar/gkp017.
  41. ^ The actinome of Dictyostelium discoideum in comparison to actins and actin-related proteins from other organisms., in PLoS One, vol. 3, n. 7, 2008, pp. e2654, DOI:10.1371/journal.pone.0002654.
  42. ^ Genome-wide transcriptional changes induced by phagocytosis or growth on bacteria in Dictyostelium., in BMC Genomics, vol. 9, 2008, p. 291, DOI:10.1186/1471-2164-9-291.
  43. ^ a b Genome-wide investigation reveals high evolutionary rates in annual model plants., in BMC Plant Biol, vol. 10, n. 1, Nov 2010, p. 242, DOI:10.1186/1471-2229-10-242.
  44. ^ Identification and structural characterization of FYVE domain-containing proteins of Arabidopsis thaliana., in BMC Plant Biol, vol. 10, 2010, p. 157, DOI:10.1186/1471-2229-10-157.
  45. ^ The evolution of a high copy gene array in Arabidopsis., in J Mol Evol, vol. 70, n. 6, Jun 2010, pp. 531-44, DOI:10.1007/s00239-010-9350-2.
  46. ^ Comparative physical mapping links conservation of microsynteny to chromosome structure and recombination in grasses., in Proc Natl Acad Sci U S A, vol. 102, n. 37, Sep 2005, pp. 13206-11, DOI:10.1073/pnas.0502365102.
  47. ^ Gene duplication in the carotenoid biosynthetic pathway preceded evolution of the grasses., in Plant Physiol, vol. 135, n. 3, Jul 2004, pp. 1776-83, DOI:10.1104/pp.104.039818.
  48. ^ Characterization of paralogous protein families in rice., in BMC Plant Biol, vol. 8, 2008, p. 18, DOI:10.1186/1471-2229-8-18.
  49. ^ Empty pericarp2 encodes a negative regulator of the heat shock response and is required for maize embryogenesis., in Plant Cell, vol. 14, n. 12, Dec 2002, pp. 3119-32.
  50. ^ The characterization of ligand-specific maize (Zea mays) profilin mutants., in Biochem J, vol. 358, Pt 1, Aug 2001, pp. 49-57.
  51. ^ Intron-exon structures of eukaryotic model organisms., in Nucleic Acids Res, vol. 27, n. 15, Aug 1999, pp. 3219-28.
  52. ^ Transposon excision from an atypical site: a mechanism of evolution of novel transposable elements., in PLoS One, vol. 2, n. 10, 2007, pp. e965, DOI:10.1371/journal.pone.0000965.
  53. ^ Plant cell division is specifically affected by nitrotyrosine., in J Exp Bot, vol. 61, n. 3, Mar 2010, pp. 901-9, DOI:10.1093/jxb/erp369.
  54. ^ Passage of Trojan peptoids into plant cells., in Chembiochem, vol. 10, n. 15, Oct 2009, pp. 2504-12, DOI:10.1002/cbic.200900331.
  55. ^ Lotus genome: pod of gold for legume research., in Trends Plant Sci, vol. 13, n. 10, Oct 2008, pp. 515-7, DOI:10.1016/j.tplants.2008.08.001.
  56. ^ Functional characterization of an unusual phytochelatin synthase, LjPCS3, of Lotus japonicus., in Plant Physiol, vol. 148, n. 1, Sep 2008, pp. 536-45, DOI:10.1104/pp.108.121715.
  57. ^ Thioredoxin-linked proteins are reduced during germination of Medicago truncatula seeds., in Plant Physiol, vol. 144, n. 3, Jul 2007, pp. 1559-79, DOI:10.1104/pp.107.098103.
  58. ^ MtDB: a database for personalized data mining of the model legume Medicago truncatula transcriptome., in Nucleic Acids Res, vol. 31, n. 1, Jan 2003, pp. 196-201.
  59. ^ Annotation and comparative analysis of the glycoside hydrolase genes in Brachypodium distachyon., in BMC Genomics, vol. 11, 2010, p. 600, DOI:10.1186/1471-2164-11-600.
  60. ^ Conserved microRNAs and their targets in model grass species Brachypodium distachyon., in Planta, vol. 230, n. 4, Sep 2009, pp. 659-69, DOI:10.1007/s00425-009-0974-7.
  61. ^ Monensin is not toxic to aquatic macrophytes at environmentally relevant concentrations., in Arch Environ Contam Toxicol, vol. 53, n. 4, Nov 2007, pp. 541-51, DOI:10.1007/s00244-007-0002-5.
  62. ^ Study of codon bias perspective of fungal xylanase gene by multivariate analysis., in Bioinformation, vol. 3, n. 10, 2009, pp. 425-9.
  63. ^ The glutathione system of Aspergillus nidulans involves a fungus-specific glutathione S-transferase., in J Biol Chem, vol. 284, n. 12, Mar 2009, pp. 8042-53, DOI:10.1074/jbc.M807771200.
  64. ^ Systems analysis unfolds the relationship between the phosphoketolase pathway and growth in Aspergillus nidulans., in PLoS One, vol. 3, n. 12, 2008, pp. e3847, DOI:10.1371/journal.pone.0003847.
  65. ^ Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa., in Proc Natl Acad Sci U S A, vol. 106, n. 52, Dec 2009, pp. 22157-62, DOI:10.1073/pnas.0906810106.
  66. ^ SnoRNAs from the filamentous fungus Neurospora crassa: structural, functional and evolutionary insights., in BMC Genomics, vol. 10, 2009, p. 515, DOI:10.1186/1471-2164-10-515.
  67. ^ Neurospora as a model fungus for studies in cytogenetics and sexual biology at Stanford., in J Biosci, vol. 34, n. 1, Mar 2009, pp. 139-59.
  68. ^ Drosophila Genetic Resource and Stock Center; The National BioResource Project., in Exp Anim, vol. 59, n. 2, 2010, pp. 125-38.
  69. ^ Lessons from a compartmental model of a Drosophila neuron., in J Neurosci, vol. 29, n. 39, Sep 2009, pp. 12033-4, DOI:10.1523/JNEUROSCI.3348-09.2009.
  70. ^ Recent advances in Drosophila stem cell biology., in Int J Dev Biol, vol. 53, n. 8-10, 2009, pp. 1329-39, DOI:10.1387/ijdb.072431jp.
  71. ^ Molecular and cellular mechanisms of lamina-specific axon targeting., in Cold Spring Harb Perspect Biol, vol. 2, n. 3, Mar 2010, pp. a001743, DOI:10.1101/cshperspect.a001743.
  72. ^ Insulin/IGF-like signalling, the central nervous system and aging., in Biochem J, vol. 418, n. 1, Feb 2009, pp. 1-12, DOI:10.1042/BJ20082102.
  73. ^ Dissection of larval CNS in Drosophila melanogaster., in J Vis Exp, n. 1, Dec 2006, p. 85, DOI:10.3791/85.
  74. ^ The gang of four gene regulates growth and patterning of the developing Drosophila eye., in Fly (Austin), vol. 4, n. 2, Apr 2010, pp. 104-16.
  75. ^ Dystroglycan and mitochondrial ribosomal protein l34 regulate differentiation in the Drosophila eye., in PLoS One, vol. 5, n. 5, 2010, pp. e10488, DOI:10.1371/journal.pone.0010488.
  76. ^ Cell cycle arrest by a gradient of Dpp signaling during Drosophila eye development., in BMC Dev Biol, vol. 10, 2010, p. 28, DOI:10.1186/1471-213X-10-28.
  77. ^ C. elegans Mutant Identification with a One-Step Whole-Genome-Sequencing and SNP Mapping Strategy., in PLoS One, vol. 5, n. 11, 2010, pp. e15435, DOI:10.1371/journal.pone.0015435.
  78. ^ Neurogenesis in the nematode Caenorhabditis elegans., in WormBook, 2010, pp. 1-24, DOI:10.1895/wormbook.1.12.2.
  79. ^ Trans-generational epigenetic regulation of C. elegans primordial germ cells., in Epigenetics Chromatin, vol. 3, n. 1, 2010, p. 15, DOI:10.1186/1756-8935-3-15.
  80. ^ microRNA expression patterns reveal differential expression of target genes with age., in PLoS One, vol. 5, n. 5, 2010, pp. e10724, DOI:10.1371/journal.pone.0010724.
  81. ^ Genome-wide gene expression regulation as a function of genotype and age in C. elegans., in Genome Res, vol. 20, n. 7, Jul 2010, pp. 929-37, DOI:10.1101/gr.102160.109.
  82. ^ Functional modularity of nuclear hormone receptors in a Caenorhabditis elegans metabolic gene regulatory network., in Mol Syst Biol, vol. 6, May 2010, p. 367, DOI:10.1038/msb.2010.23.
  83. ^ Structural and biochemical characterization of CRN-5 and Rrp46: an exosome component participating in apoptotic DNA degradation., in RNA, vol. 16, n. 9, Sep 2010, pp. 1748-59, DOI:10.1261/rna.2180810.
  84. ^ The apoptosome at high resolution., in Cell, vol. 141, n. 3, Apr 2010, pp. 402-4, DOI:10.1016/j.cell.2010.04.015.
  85. ^ Radiation biology of Caenorhabditis elegans: germ cell response, aging and behavior., in J Radiat Res (Tokyo), vol. 51, n. 2, Mar 2010, pp. 107-21.
  86. ^ Axial patterning in hydra., in Cold Spring Harb Perspect Biol, vol. 1, n. 1, Jul 2009, pp. a000463, DOI:10.1101/cshperspect.a000463.
  87. ^ Evolutionary history of the HAP2/GCS1 gene and sexual reproduction in metazoans., in PLoS One, vol. 4, n. 11, 2009, pp. e7680, DOI:10.1371/journal.pone.0007680.
  88. ^ A novel gene family controls species-specific morphological traits in Hydra., in PLoS Biol, vol. 6, n. 11, Nov 2008, pp. e278, DOI:10.1371/journal.pbio.0060278.
  89. ^ Models for the generation and interpretation of gradients., in Cold Spring Harb Perspect Biol, vol. 1, n. 4, Oct 2009, pp. a001362, DOI:10.1101/cshperspect.a001362.
  90. ^ Hydra regeneration and epitheliopeptides., in Dev Dyn, vol. 226, n. 2, Feb 2003, pp. 182-9, DOI:10.1002/dvdy.10221.
  91. ^ HyAlx, an aristaless-related gene, is involved in tentacle formation in hydra., in Development, vol. 127, n. 22, Nov 2000, pp. 4743-52.
  92. ^ Modulation of the development of plutei by nitric oxide in the sea urchin Arbacia punctulata., in Biol Bull, vol. 199, n. 2, Oct 2000, pp. 195-7.
  93. ^ Ryanodine-sensitive calcium flux regulates motility of Arbacia punctulata sperm., in Biol Bull, vol. 205, n. 2, Oct 2003, pp. 185-6.
  94. ^ [Influence of NO-synthase inhibitors on embryonal development of sea urchins.], in Zh Evol Biokhim Fiziol, vol. 40, n. 3, pp. 229-34.
  95. ^ An ultracytochemical study of the respiratory potency, integrity, and fate of the sea urchin sperm mitochondria during early embryogenesis., in J Cell Biol, vol. 66, n. 2, Aug 1975, pp. 367-76.
  96. ^ Induction of a reductive pathway for deoxyribonucleotide synthesis during early embryogenesis of the sea urchin., in Proc Natl Acad Sci U S A, vol. 69, n. 8, Aug 1972, pp. 2006-10.
  97. ^ Assessment of DNA damage by RAPD in Paracentrotus lividus embryos exposed to amniotic fluid from residents living close to waste landfill sites., in J Biomed Biotechnol, vol. 2010, 2010, DOI:10.1155/2010/251767.
  98. ^ A method for measuring mitochondrial mass and activity., in Cytotechnology, vol. 56, n. 3, Mar 2008, pp. 145-9, DOI:10.1007/s10616-008-9143-2.
  99. ^ First cell cycles of sea urchin Paracentrotus lividus are dramatically impaired by exposure to extremely low-frequency electromagnetic field., in Biol Reprod, vol. 75, n. 6, Dec 2006, pp. 948-53, DOI:10.1095/biolreprod.106.051227.
  100. ^ Population structure of Vibrio fischeri within the light organs of Euprymna scolopes squid from Two Oahu (Hawaii) populations., in Appl Environ Microbiol, vol. 75, n. 1, Jan 2009, pp. 193-202, DOI:10.1128/AEM.01792-08.
  101. ^ H-NOX-mediated nitric oxide sensing modulates symbiotic colonization by Vibrio fischeri., in Proc Natl Acad Sci U S A, vol. 107, n. 18, May 2010, pp. 8375-80, DOI:10.1073/pnas.1003571107.
  102. ^ Transcriptional patterns in both host and bacterium underlie a daily rhythm of anatomical and metabolic change in a beneficial symbiosis., in Proc Natl Acad Sci U S A, vol. 107, n. 5, Feb 2010, pp. 2259-64, DOI:10.1073/pnas.0909712107.
  103. ^ Evidence for light perception in a bioluminescent organ., in Proc Natl Acad Sci U S A, vol. 106, n. 24, Jun 2009, pp. 9836-41, DOI:10.1073/pnas.0904571106.
  104. ^ Squid (Loligo pealei) giant fiber system: a model for studying neurodegeneration and dementia?, in Biol Bull, vol. 210, n. 3, Jun 2006, pp. 318-33.
  105. ^ Vesicular reuptake inhibition by a synaptotagmin I C2B domain antibody at the squid giant synapse., in Proc Natl Acad Sci U S A, vol. 101, n. 51, Dec 2004, pp. 17855-60, DOI:10.1073/pnas.0408200101.
  106. ^ Crystallization and preliminary X-ray diffraction analysis of calexcitin from Loligo pealei: a neuronal protein implicated in learning and memory., in Acta Crystallogr Sect F Struct Biol Cryst Commun, vol. 61, Pt 10, Oct 2005, pp. 879-81, DOI:10.1107/S1744309105026758.
  107. ^ 3D Standard Brain of the Red Flour Beetle Tribolium Castaneum: A Tool to Study Metamorphic Development and Adult Plasticity., in Front Syst Neurosci, vol. 4, 2010, p. 3, DOI:10.3389/neuro.06.003.2010.
  108. ^ Forward genetics in Tribolium castaneum: opening new avenues of research in arthropod biology., in J Biol, vol. 8, n. 12, 2009, p. 106, DOI:10.1186/jbiol208.
  109. ^ BeetleBase in 2010: revisions to provide comprehensive genomic information for Tribolium castaneum., in Nucleic Acids Res, vol. 38, Database issue, Jan 2010, pp. D437-42, DOI:10.1093/nar/gkp807.
  110. ^ The transcription/migration interface in heart precursors of Ciona intestinalis., in Science, vol. 320, n. 5881, Jun 2008, pp. 1349-52, DOI:10.1126/science.1158170.
  111. ^ Similar regulatory logic in Ciona intestinalis for two Wnt pathway modulators, ROR and SFRP-1/5., in Dev Biol, vol. 329, n. 2, May 2009, pp. 364-73, DOI:10.1016/j.ydbio.2009.02.018.
  112. ^ Delineating metamorphic pathways in the ascidian Ciona intestinalis., in Dev Biol, vol. 326, n. 2, Feb 2009, pp. 357-67, DOI:10.1016/j.ydbio.2008.11.026.
  113. ^ Proteogenomics of Pristionchus pacificus reveals distinct proteome structure of nematode models., in Genome Res, vol. 20, n. 6, Jun 2010, pp. 837-46, DOI:10.1101/gr.103119.109.
  114. ^ Repertoire and evolution of miRNA genes in four divergent nematode species., in Genome Res, vol. 19, n. 11, Nov 2009, pp. 2064-74, DOI:10.1101/gr.093781.109.
  115. ^ Natural variation of outcrossing in the hermaphroditic nematode Pristionchus pacificus., in BMC Evol Biol, vol. 9, 2009, p. 75, DOI:10.1186/1471-2148-9-75.
  116. ^ Disequilibrium in some Cepaea populations., in Heredity, vol. 94, n. 5, May 2005, pp. 497-500, DOI:10.1038/sj.hdy.6800645.
  117. ^ History or current selection? A molecular analysis of 'area effects' in the land snail Cepaea nemoralis., in Proc Biol Sci, vol. 267, n. 1451, Jul 2000, pp. 1399-405, DOI:10.1098/rspb.2000.1156.
  118. ^ Spatial structure of shell polychromatism in populations of Cepaea nemoralis: new techniques for an old debate., in Heredity, vol. 88, n. 1, Jan 2002, pp. 75-82, DOI:10.1038/sj.hdy.6800012.
  119. ^ Precise temperature compensation of phase in a rhythmic motor pattern., in PLoS Biol, vol. 8, n. 8, 2010, DOI:10.1371/journal.pbio.1000469.
  120. ^ Hormonal modulation of sensorimotor integration., in J Neurosci, vol. 30, n. 7, Feb 2010, pp. 2418-27, DOI:10.1523/JNEUROSCI.5533-09.2010.
  121. ^ Neural mechanisms underlying the generation of the lobster gastric mill motor pattern., in Front Neural Circuits, vol. 3, 2009, p. 12, DOI:10.3389/neuro.04.012.2009.
  122. ^ Functional consequences of animal-to-animal variation in circuit parameters., in Nat Neurosci, vol. 12, n. 11, Nov 2009, pp. 1424-30, DOI:10.1038/nn.2404.
  123. ^ The transformation of the model organism: a decade of developmental genetics., in Nat Genet, 33 Suppl, Mar 2003, pp. 285-93, DOI:10.1038/ng1105.
  124. ^ The National BioResource Project Medaka (NBRP Medaka): an integrated bioresource for biological and biomedical sciences., in Exp Anim, vol. 59, n. 1, 2010, pp. 13-23.
  125. ^ Murine models of human acute myeloid leukemia., in Cancer Treat Res, vol. 145, 2010, pp. 183-96, DOI:10.1007/978-0-387-69259-3_11.
  126. ^ Mouse models with human immunity and their application in biomedical research., in J Cell Mol Med, vol. 13, n. 6, Jun 2009, pp. 1043-58, DOI:10.1111/j.1582-4934.2008.00347.x.
  127. ^ Loci on chromosomes 2, 4, 9, and 16 for body weight, body length, and adiposity identified in a genome scan of an F2 intercross between the 129P3/J and C57BL/6ByJ mouse strains., in Mamm Genome, vol. 14, n. 5, May 2003, pp. 302-13.
  128. ^ Dose-response effects of ectopic agouti protein on iron overload and age-associated aspects of the Avy/a obese mouse phenome., in Peptides, vol. 26, n. 10, Oct 2005, pp. 1697-711, DOI:10.1016/j.peptides.2004.12.033.
  129. ^ Ototoxic drugs: difference in sensitivity between mice and guinea pigs., in Toxicol Lett, vol. 193, n. 1, Mar 2010, pp. 41-9, DOI:10.1016/j.toxlet.2009.12.003.
  130. ^ Identification, sequencing, and cellular localization of hepcidin in guinea pig (Cavia porcellus)., in J Endocrinol, vol. 202, n. 3, Sep 2009, pp. 389-96, DOI:10.1677/JOE-09-0191.
  131. ^ a b Preference, adaptation and survival of Mycoplasma pneumoniae subtypes in an animal model., in Int J Med Microbiol, vol. 294, n. 2-3, Sep 2004, pp. 149-55.
  132. ^ Experimental models used to study human tuberculosis., in Adv Appl Microbiol, vol. 71, 2010, pp. 75-89, DOI:10.1016/S0065-2164(10)71003-0.
  133. ^ Past, present and future directions in human genetic susceptibility to tuberculosis., in FEMS Immunol Med Microbiol, vol. 58, n. 1, Feb 2010, pp. 3-26, DOI:10.1111/j.1574-695X.2009.00600.x.
  134. ^ Evaluation of neonatally-induced mild diabetes in rats: Maternal and fetal repercussions., in Diabetol Metab Syndr, vol. 2, n. 1, 2010, p. 37, DOI:10.1186/1758-5996-2-37.
  135. ^ The Rat Genome Database 2009: variation, ontologies and pathways., in Nucleic Acids Res, vol. 37, Database issue, Jan 2009, pp. D744-9, DOI:10.1093/nar/gkn842.
  136. ^ Rapid but not slow spinal cord compression elicits neurogenic pulmonary edema in the rat., in Physiol Res, vol. 58, n. 2, 2009, pp. 269-77.
  137. ^ Methylated arsenicals: the implications of metabolism and carcinogenicity studies in rodents to human risk assessment., in Crit Rev Toxicol, vol. 36, n. 2, Feb 2006, pp. 99-133.
  138. ^ Novel approaches to models of Alzheimer's disease pathology for drug screening and development., in J Mol Neurosci, vol. 24, n. 1, 2004, pp. 23-32, DOI:10.1385/JMN:24:1:023.
  139. ^ The marmoset and cotton rat as animal models for the study of sperm chromatin packaging., in Syst Biol Reprod Med, vol. 56, n. 3, Jun 2010, pp. 207-12, DOI:10.3109/19396361003653311.
  140. ^ JGI-Led Team Sequences Frog Genome, in GenomeWeb.com, Genome Web, 29 aprile 2010. URL consultato il 30 aprile 2010.

Bibliografia

Voci correlate

Modello animale

Collegamenti esterni

Template:Censbio