Relazione di congruenza

Da Wikipedia, l'enciclopedia libera.
Se riscontri problemi nella visualizzazione dei caratteri, clicca qui.
Vedi congruenza (geometria) per il termine usato in geometria elementare.

In matematica e soprattutto in algebra e in geometria, una relazione di congruenza, chiamata anche semplicemente congruenza, è una relazione di equivalenza compatibile con alcune operazioni algebriche.

Aritmetica modulare[modifica | modifica sorgente]

Exquisite-kfind.png Per approfondire, vedi aritmetica modulare.

L'esempio basilare è dato dall'aritmetica modulare: se n è un numero naturale positivo, due interi a e b sono detti congruenti modulo n se a − b è divisibile per n; oppure, equivalentemente, se a e b divisi per n danno lo stesso resto.

Si verifica facilmente che la relazione di congruenza è riflessiva, simmetrica e transitiva. Pertanto è una relazione di equivalenza. Questa relazione è compatibile con le operazioni di somma e prodotto fra numeri interi: ad esempio, se a_1 \equiv b_1 \pmod n e a_2 \equiv b_2 \pmod n, allora a_1+a_2 \equiv b_1+b_2 \pmod n e a_1a_2 \equiv b_1b_2 \pmod n.

Algebra lineare[modifica | modifica sorgente]

Exquisite-kfind.png Per approfondire, vedi congruenza fra matrici.

Due matrici quadrate  A e  B , a valori in un campo  K , sono congruenti se esiste una matrice invertibile  P tale che

 P^T A P = B

dove  P^T è la matrice trasposta di  P.

La relazione di congruenza è solitamente studiata fra matrici simmetriche, perché due tali matrici sono congruenti se e solo se rappresentano lo stesso prodotto scalare su basi diverse.

Nel caso in cui il campo  K sia il campo dei numeri reali o complessi, il teorema di Sylvester fornisce un invariante completo (detto segnatura) che caratterizza completamente le classi di equivalenza di matrici simmetriche congruenti.

Se  K è il campo dei numeri complessi, è possibile definire una nozione di congruenza lievemente differente: secondo questa definizione, due matrici sono congruenti se esiste una  P invertibile con

 \bar P^T A P = B

dove  \bar P^T è la matrice trasposta coniugata di  P . Questa definizione è utile per le matrici hermitiane: in questo contesto, due matrici hermitiane sono congruenti rappresentano la stessa forma hermitiana su basi diverse.

Algebra universale[modifica | modifica sorgente]

L'idea viene generalizzata nell'algebra universale: Una relazione di congruenza su un'algebra A è un sottoinsieme del prodotto diretto A × A tale che sia una relazione di equivalenza su A e una sottoalgebra di A × A.

Le congruenze tipicamente si presentano come nuclei di omomorfismi, e infatti ogni congruenza è il nucleo di qualche omomorfismo: Per una data congruenza ~ su A, l'insieme A/~ delle classi di equivalenza può essere, data la struttura di un'algebra, l'algebra quoziente. Inoltre, la funzione che associa ogni elemento di A alla sua classe di equivalenza è un omomorfismo, e il nucleo di questo omomorfismo è ~.

Teoria dei gruppi[modifica | modifica sorgente]

Nel caso particolare dei gruppi, le relazioni di congruenza possono essere descritte in termini elementari: Se G è un gruppo (con elemento neutro e) e ~ è una relazione binaria su G, allora ~ è una congruenza se:

  1. Dato un generico elemento a di G, a ~ a;
  2. Dati i generici elementi a e b di G, se a ~ b, allora b ~ a;
  3. Dati i generici elementi a, b, e c di G, se a ~ b e b ~ c, allora a ~ c;
  4. Dati i generici elementi a e a' di G, se a ~ a', allora a−1 ~ a'−1;
  5. Dati i generici elementi a, a', b, e b' di G, se a ~ a' e b ~ b', allora a * b ~ a' * b'.

Tale congruenza è determinata interamente dall'insieme {aG : a ~ e} degli elementi di G congruenti all'elemento neutro, e questo insieme è un sottogruppo normale. In particolare, a ~ b se e solo se b−1 * a ~ e. Quindi, invece di parlare di congruenze su gruppi, si parla in termini di sottogruppi normali; infatti, ogni congruenza corrisponde in modo unico a un certo sottogruppo normale di G. Questo rende possibile parlare di nuclei in teoria dei gruppi come sottogruppi, mentre nella più generale algebra universale, i nuclei sono congruenze.

Teoria degli anelli[modifica | modifica sorgente]

Un trucco simile permette di parlare dei nuclei nella teoria degli anelli come ideali invece di relazioni di congruenza, e in teoria dei moduli come sottomoduli invece di relazioni di congruenza.

Caso generale per i nuclei[modifica | modifica sorgente]

La situazione più generale in cui questo trucco è possibile è nelle algebre a supporto ideale. Ma questo non è possibile con i monoidi, ad esempio, quindi lo studio delle relazioni di congruenza gioca un ruolo più centrale nella teoria dei monoidi.

Voci correlate[modifica | modifica sorgente]

Bibliografia[modifica | modifica sorgente]

  • (EN) Horn and Johnson, Matrix Analysis, Cambridge University Press, 1985. ISBN 0-521-38632-2. (La sezione 4.5 tratta la congruenza di matrici.)
matematica Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica