Gas ideale

Da Wikipedia, l'enciclopedia libera.
In un diagramma p-V (piano di Clapeyron), le isoterme di un gas ideale sono rappresentate da iperboli equilatere.

Un gas ideale, o gas perfetto[1][2], è un gas descritto dall'equazione di stato dei gas perfetti, e che quindi rispetta la legge di Boyle-Mariotte, la prima legge di Gay-Lussac o legge di Charles, e la seconda legge di Gay-Lussac, in tutte le condizioni di temperatura, densità e pressione.[3][4][5] In questo modello le molecole del gas sono assunte puntiformi e non interagenti. I gas reali si comportano con buona approssimazione come gas perfetti quando la pressione è sufficientemente bassa e la temperatura sufficientemente alta.[6]

Proprietà di un gas ideale[modifica | modifica wikitesto]

Per gas ideale si intende un gas che possieda le seguenti proprietà:[7]

  • le molecole sono puntiformi e pertanto hanno un volume trascurabile;
  • interagiscono tra loro e con le pareti del recipiente mediante urti perfettamente elastici (ovvero non vi è dispersione di energia cinetica durante gli urti);
  • non esistono forze di interazione a distanza tra le molecole del gas: le molecole si dicono non interagenti;
  • le molecole del gas sono identiche tra loro e indistinguibili;
  • il moto delle molecole è casuale e e disordinato in ogni direzione ma soggetto a leggi deterministiche.

In conseguenza di ciò:

  • il gas non può essere liquefatto per sola compressione, ossia non subisce trasformazioni di stato;
  • il calore specifico è costante, mentre nei gas reali è funzione della temperatura;
  • l'energia interna è data solamente dall'energia cinetica, non da quella potenziale; essa rimane costante e non viene dissipata.

In un gas ideale l'energia cinetica media delle molecole del gas è direttamente proporzionale alla temperatura:

I gas reali vengono descritti dalla legge dei gas perfetti con buona approssimazione solo quando la pressione è sufficientemente bassa e la temperatura sufficientemente alta. In caso contrario è valida la legge dei gas reali.

Energia interna[modifica | modifica wikitesto]

La variazione dell'energia interna è una funzione di stato, ossia ha la proprietà di dipendere solo dal suo stato iniziale e finale e non dal percorso compiuto. In generale si ha che l'energia interna è una funzione sia della temperatura che del volume, differenziando si ottiene quindi:

Considerando i risultati matematici dell'esperienza di Joule per l'espansione libera di un gas perfetto:

e sostituendo nel differenziale precedentemente calcolato, si ottiene:

Ovvero per i gas perfetti l'energia interna è funzione solamente della temperatura.[8]

Definendo come Cv la capacità termica a volume costante, allora per una trasformazione isocora dal primo principio della termodinamica si ha che

dove è il calore scambiato dal gas con l'ambiente durante la trasformazione. Assumendo che la capacità termica è costante con la temperatura, e usando la legge dei gas perfetti, allora il primo principio della termodinamica può essere riscritto per i gas ideali e per trasformazioni quasistatiche come

dove è la costante universale dei gas e è il numero di moli di gas.[9]

Entalpia[modifica | modifica wikitesto]

Per il gas ideale anche l'entalpia è funzione solamente della temperatura:

dove Cp è la capacità termica a pressione costante.

Per un gas perfetto vale la relazione[senza fonte]:

.

Note[modifica | modifica wikitesto]

  1. ^ Peter Atkins, Julio de Paula, Physical Chemistry, OUP Oxford, 2014, pp. 33.
  2. ^ In alcuni casi, una distinzione è introdotta fra gas ideale e gas perfetto. Un gas perfetto è definito come un gas ideale che possieda un rateo dei calori specifici costante:


    Si veda anche Philip A. Thompson, Compressible-Fluid Dynamics (PDF), 1988.
  3. ^ (EN) Ideal gas, su goldbook.iupac.org.
  4. ^ (EN) Perfect gas, su www.britannica.com.
  5. ^ (EN) J. S. Rowlinson, James Joule, William Thomson and the concept of a perfect gas, in Notes Rec. R. Soc. 20, vol. 64, pp. 47-53.
  6. ^ (definibile dal fattore di comprimibilità z che misura lo scostamento del comportamento ideale da quello reale) in funzione dei parametri adimensionali : π = (Pressione della sostanza gassosa in questione / Pressione critica della sostanza gassosa in questione) < 0,15; φ = (Temperatura della sostanza gassosa in questione / Temperatura critica della sostanza gassosa in questione) > 1.
  7. ^ I gas perfetti, su www.sapere.it. URL consultato l'8 novembre 2014.
  8. ^ (EN) The Joule Expansion, chem.arizona.edu.
  9. ^ (EN) Entropy, grc.nasa.gov. URL consultato l'8 novembre 2014.

Bibliografia[modifica | modifica wikitesto]

  • Philip A. Thompson, Compressible-Fluid Dynamics, Irving H. Shames, 1988.

Voci correlate[modifica | modifica wikitesto]