Utente:Datolo12/Sandbox

Da Wikipedia, l'enciclopedia libera.
Vai alla navigazione Vai alla ricerca

Altre pagine di prova[modifica | modifica wikitesto]

Teoria perturbativa[modifica | modifica wikitesto]

In matematica e matematica applicata, la teoria perturbativa o teoria delle perturbazioni comprende i metodi per trovare una soluzione approssimata di un problema, partendo dalla soluzione esatta di un problema correlato e più semplice.[1][2] Una caratteristica cruciale della tecnica è un passaggio intermedio che suddivide il problema in parti "risolvibili" e "perturbative".[3] Nella teoria delle perturbazioni, la soluzione è espressa come una serie di potenze in un piccolo parametro .[1][2] Il primo termine è la soluzione nota del problema risolvibile. I termini successivi della serie a potenze maggiori di diventano solitamente più piccoli. Una "soluzione perturbativa" approssimata si ottiene troncando la serie, di solito mantenendo solo i primi due termini, la soluzione del problema noto e la correzione perturbativa del "primo ordine".

La teoria delle perturbazioni è utilizzata ampiamente in fisica e in particolare in meccanica quantistica e in teoria quantistica dei campi.

Note[modifica | modifica wikitesto]

  1. ^ a b Carl M. Bender e Steven A. Orszag, Advanced mathematical methods for scientists and engineers I: asymptotic methods and perturbation theory, New York, NY, 1999, ISBN 978-1-4757-3069-2, OCLC 851704808.
  2. ^ a b Mark H. Holmes, Introduction to Perturbation Methods, 2ª ed., New York, Springer, 2013, ISBN 978-1-4614-5477-9, OCLC 821883201.
  3. ^ William E. Wiesel, Modern Astrodynamics, Ohio, Aphelion Press, 2010, p. 107, ISBN 978-145378-1470.
  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica

Mobilità condivisa[modifica | modifica wikitesto]

Stazioni di ricarica a San Francisco

La mobilità condivisa o trasporto condiviso è un sistema di trasporto in cui i viaggiatori condivide un veicolo o nello stesso momento (es. car pooling) o in tempi diversi (es. bici o auto condivise), creando così un ibrido tra il veicolo privato e il trasporto pubblico.

Each shared mobility service has unique attributes that have a range of impacts on travel behavior, the environment, and the development of cities and urban areas. Some impacts of shared mobility include enhanced transportation accessibility as well as reduced driving and decreased personal vehicle ownership.[1][2] Shared mobility programs often yield a variety of environmental, social, and transportation system benefits. These are primarily related to personal vehicle usage and ownership, and vehicle miles or kilometers traveled (VMT/VKT).[3] Shared mobility networks also retain the potential to expand the reach of public transportation by addressed gaps in existing public transportation systems. They can also provide economic benefits to users in the form of cost savings in some cases.[1]

Shared transport systems include carsharing (also called car clubs in the UK), bicycle sharing (also known as PBS or public bicycle systems), carpools and vanpools (aka ride-sharing or lift-sharing), real-time ridesharing, slugging (casual carpooling), community buses and vans, demand responsive transit (DRT), paratransit, a range of taxi projects and even hitchhiking and its numerous variants.[4][5]

Shared transport is taking on increasing importance as a key strategy for reducing greenhouse gas and other emissions from the transport sector in the face of the global climate emergency by finding ways of getting more intensive use of vehicles on the road.[senza fonte]

A somewhat different form of shared transport is the "shared taxi", a vehicle which follows a predetermined route and takes anybody waiting for it, more like a bus than a taxi.

Incidenti e attentati[modifica | modifica wikitesto]

Incidenti[modifica | modifica wikitesto]

Following the 2011 Fukushima Daiichi nuclear disaster, the world's worst nuclear accident since 1986, 50,000 households were displaced after radiation leaked into the air, soil and sea.[6] Radiation checks led to bans of some shipments of vegetables and fish.[7]
Reactor decay heat as a fraction of full power after the reactor shutdown, using two different correlations. To remove the decay heat, reactors need cooling after the shutdown of the fission reactions. A loss of the ability to remove decay heat caused the Fukushima accident.

Gli incidenti nucleari sono classificati secondo la scala INES con un numero da 0 (comportamento anomalo che non pone rischi alla salute) fino 7 (incidente grave con effetti diffusi). Ci sono stati 3 incidenti di livello 5 o superiore: l'incidente di Three Mile Island al livello 5 e gli incidenti di Cernobyl e di Fukushima al livello 7. L'incidente di Fukushima, provocato dal maremoto del Tohoku, sebbene portò a una contaminazione radioattiva delle aree circostanti, non ha causato alcuna morte dovuta alle radiazioni. Si prevede che i complicati lavori di cleanup costeranno decine di miliardi di dollari nel corso di 40 o più anni.[8][9] L'incidente di Three Mile Island del 1979 è stato un incidente di scala più piccola e non causò morti né direttamente né indirettamente.[10]

L'impatto degli incidenti nucleari è controverso. Secondo Benjamin K. Sovacool, gli incidenti all'energia da fissione sono al primo posto tra le fonti di energia in termini di costo economico totale, rappresentando il 41% di tutti i danni materiali attribuiti agli incidenti energetici. Un'altra analisi ha scoperto che gli incidenti al carbone, al petrolio, al gas di petrolio liquido e all'idroelettrico (principalmente a causa del disastro della diga di Banqiao) hanno avuto un impatto economico maggiore rispetto agli incidenti all'energia nucleare. Lo studio confronta le morti latenti per cancro attribuibili al nucleare con le morti immediate da altre fonti di energia per unità di energia generata, e non include il cancro legato ai combustibili fossili e altre morti indirette create dal consumo di combustibili fossili nella sua classificazione di "incidente grave" (un incidente con più di 5 morti). L'incidente di Chernobyl nel 1986 ha causato circa 50 morti per effetti diretti e indiretti, e alcune lesioni gravi temporanee per la sindrome acuta da radiazioni. La mortalità futura prevista per l'aumento dei tassi di cancro è stimata a circa 4000 nei decenni a venire. Tuttavia, i costi sono stati grandi e stanno aumentando.

Gli eventi meteorologici estremi, compresi quelli resi più gravi dal cambiamento climatico, diminuiscono l'affidabilità dell'energia nucleare. I nuovi tipi di reattori e l'indebolimento degli standard di sicurezza per aumentare la competitività dell'energia nucleare possono aumentare i rischi o avere nuovi rischi di incidenti.

L'energia nucleare funziona sotto un quadro assicurativo che limita o struttura le responsabilità degli incidenti secondo le convenzioni nazionali e internazionali. Si sostiene spesso che questo potenziale deficit di responsabilità rappresenta un costo esterno non incluso nel costo dell'elettricità nucleare. Questo costo è piccolo, pari a circa lo 0,1% del costo livellato dell'elettricità, secondo uno studio del Congressional Budget Office negli Stati Uniti. Questi costi di assicurazione oltre il normale per gli scenari peggiori non sono unici per l'energia nucleare. Le centrali idroelettriche, allo stesso modo, non sono completamente assicurate contro un evento catastrofico come il cedimento di una diga. Per esempio, il cedimento della diga di Banqiao ha causato la morte di circa 30.000-200.000 persone, e 11 milioni di persone hanno perso le loro case. Poiché gli assicuratori privati basano i premi assicurativi per le dighe su scenari limitati, l'assicurazione contro i grandi disastri in questo settore è ugualmente fornita dallo stato.

The impact of nuclear accidents is controversial. According to Benjamin K. Sovacool, fission energy accidents ranked first among energy sources in terms of their total economic cost, accounting for 41 percent of all property damage attributed to energy accidents.[11] Another analysis found that coal, oil, liquid petroleum gas and hydroelectric accidents (primarily due to the Banqiao Dam disaster) have resulted in greater economic impacts than nuclear power accidents.[12] The study compares latent cancer deaths attributable to nuclear with immediate deaths from other energy sources per unit of energy generated, and does not include fossil fuel related cancer and other indirect deaths created by the use of fossil fuel consumption in its "severe accident" (an accident with more than 5 fatalities) classification. The Chernobyl accident in 1986 caused approximately 50 deaths from direct and indirect effects, and some temporary serious injuries from acute radiation syndrome.[13] The future predicted mortality from increases in cancer rates is estimated at about 4000 in the decades to come.[14][15][16] However, the costs have been large and are increasing.

Extreme weather events, including events made more severe by climate change, decrease the reliability of nuclear energy.[17][18] Novel reactor types[19] and weakening of safety standards to increase competitiveness of nuclear energy may increase risks or have new risks of accidents.[20]

Nuclear power works under an insurance framework that limits or structures accident liabilities in accordance with national and international conventions.[21] It is often argued that this potential shortfall in liability represents an external cost not included in the cost of nuclear electricity. This cost is small, amounting to about 0.1% of the levelized cost of electricity, according to a study by the Congressional Budget Office in the United States.[22] These beyond-regular insurance costs for worst-case scenarios are not unique to nuclear power. Hydroelectric power plants are similarly not fully insured against a catastrophic event such as dam failures. For example, the failure of the Banqiao Dam caused the death of an estimated 30,000 to 200,000 people, and 11 million people lost their homes. As private insurers base dam insurance premiums on limited scenarios, major disaster insurance in this sector is likewise provided by the state.[23]

Attacchi e sabotaggi[modifica | modifica wikitesto]

I terroristi potrebbero prendere di mira le centrali nucleari nel tentativo di rilasciare contaminazione radioattiva nella comunità. La Commissione dell'11 settembre degli Stati Uniti ha detto che le centrali nucleari erano potenziali obiettivi originariamente considerati per gli attacchi dell'11 settembre 2001. Un attacco alla piscina del combustibile esaurito di un reattore potrebbe anche essere grave, poiché queste piscine sono meno protette del nucleo del reattore. Il rilascio di radioattività potrebbe portare a migliaia di morti a breve termine e a un numero maggiore di vittime a lungo termine.

Negli Stati Uniti, l'NRC effettua esercitazioni "Force on Force" (FOF) in tutti i siti di centrali nucleari almeno una volta ogni tre anni. Negli Stati Uniti, le centrali sono circondate da una doppia fila di alte recinzioni che sono controllate elettronicamente. L'area della centrale è pattugliata da una notevole forza di guardie armate.

Anche il sabotaggio interno è una minaccia perché gli insider possono osservare e aggirare le misure di sicurezza. I crimini insider di successo dipendono dall'osservazione e dalla conoscenza delle vulnerabilità della sicurezza da parte degli autori. Un incendio ha causato 5-10 milioni di dollari di danni all'Indian Point Energy Center di New York nel 1971. Il piromane si rivelò essere un addetto alla manutenzione dell'impianto.

Terrorists could target nuclear power plants in an attempt to release radioactive contamination into the community. The United States 9/11 Commission has said that nuclear power plants were potential targets originally considered for the September 11, 2001 attacks. An attack on a reactor's spent fuel pool could also be serious, as these pools are less protected than the reactor core. The release of radioactivity could lead to thousands of near-term deaths and greater numbers of long-term fatalities.[24]

In the United States, the NRC carries out "Force on Force" (FOF) exercises at all nuclear power plant sites at least once every three years.[24] In the United States, plants are surrounded by a double row of tall fences which are electronically monitored. The plant grounds are patrolled by a sizeable force of armed guards.[25]

Insider sabotage is also a threat because insiders can observe and work around security measures. Successful insider crimes depended on the perpetrators' observation and knowledge of security vulnerabilities.[26] A fire caused 5–10 million dollars worth of damage to New York's Indian Point Energy Center in 1971.[27] The arsonist turned out to be a plant maintenance worker.[28]

Note[modifica | modifica wikitesto]

  1. ^ a b Shaheen, S., et al., "Shared Mobility: Definitions, Industry Developments, and Early Understanding." Transportation Sustainability Research Center, Innovative Mobility Research. July 2015.
  2. ^ Cohen, Adam and Susan Shaheen, “Planning for Shared Mobility.” Planning Advisory Service (PAS) 583, American Planning Association, Washington, D.C.. July 2016.
  3. ^ A Review on Energy, Environmental, and Sustainability Implications of Connected and Automated Vehicles., in Environmental Science & Technology, vol. 52, n. 20, 2018, pp. 11449–11465, DOI:10.1021/acs.est.8b00127.
  4. ^ Anne Eisenberg, Need a Ride? Check Your iPhone, in The New York Times, December 21, 2008.
  5. ^ EcoPlan.org article, su ecoplan.org, 2008. URL consultato il 24 giugno 2009.
  6. ^ Fukushima Retiree Leads Anti-Nuclear Shareholders at Tepco Annual Meeting, in Bloomberg, 27 giugno 2011.
  7. ^ Mari Saito, Japan anti-nuclear protesters rally after PM call to close plant, in Reuters, 7 maggio 2011.
  8. ^ Richard Schiffman, Two years on, America hasn't learned lessons of Fukushima nuclear disaster, in The Guardian, 12 marzo 2013.
  9. ^ Martin Fackler, Report Finds Japan Underestimated Tsunami Danger, 1º giugno 2011.
  10. ^ Template:Cite magazine
  11. ^ The costs of failure: A preliminary assessment of major energy accidents, 1907–2007, in Energy Policy, vol. 36, n. 5, 2008, pp. 1802–1820, DOI:10.1016/j.enpol.2008.01.040.
  12. ^ A Comparative Analysis of Accident Risks in Fossil, Hydro, and Nuclear Energy Chains, in Human and Ecological Risk Assessment, vol. 14, n. 5, 10 October 2008, pp. 947–973, DOI:10.1080/10807030802387556.
  13. ^ Chernobyl at 25th anniversary – Frequently Asked Questions (PDF), su who.int, World Health Organisation, 23 April 2011.
  14. ^ Assessing the Chernobyl Consequences, su iaea.org.
  15. ^ UNSCEAR 2008 Report to the General Assembly, Annex D (PDF), su unscear.org, 2008.
  16. ^ UNSCEAR 2008 Report to the General Assembly (PDF), su unscear.org, 2008.
  17. ^ (EN) Nuclear power's reliability is dropping as extreme weather increases, in Ars Technica, 24 July 2021.
  18. ^ (EN) Increase in frequency of nuclear power outages due to changing climate, in Nature Energy, vol. 6, n. 7, July 2021, pp. 755–762, DOI:10.1038/s41560-021-00849-y.
  19. ^ Errore nelle note: Errore nell'uso del marcatore <ref>: non è stato indicato alcun testo per il marcatore adva1
  20. ^ Errore nelle note: Errore nell'uso del marcatore <ref>: non è stato indicato alcun testo per il marcatore 10.1016/j.erss.2014.04.015
  21. ^ Publications: Vienna Convention on Civil Liability for Nuclear Damage, su iaea.org, International Atomic Energy Agency.
  22. ^ Nuclear Power's Role in Generating Electricity (PDF), su cbo.gov, Congressional Budget Office, May 2008.
  23. ^ Availability of Dam Insurance (PDF), su damsafety.org, 1999.
  24. ^ a b The Future of Nuclear Power in the United States (PDF), su fas.org, 2012.
  25. ^ Nuclear Security – Five Years After 9/11, su nrc.gov, U.S. NRC.
  26. ^ Matthew Bunn, A Worst Practices Guide to Insider Threats: Lessons from Past Mistakes, su amacad.org, The American Academy of Arts & Sciences, 2014.
  27. ^ (EN) Robert D. McFadden, Damage Is Put at Millions In Blaze at Con Ed Plant, in The New York Times, 14 novembre 1971.
  28. ^ (EN) Michael Knight, Mechanic Seized in Indian Pt. Fire, in The New York Times, 30 gennaio 1972.

Absalon[modifica | modifica wikitesto]

Absalon was a Danish statesman and prelate of the Catholic Church who served as the bishop of Roskilde from 1158 to 1192 and archbishop of Lund from 1178 until his death. He was the foremost politician and church father of Denmark in the second half of the 12th century, and was the closest advisor of King Valdemar I of Denmark. He was a key figure in the Danish policies of territorial expansion in the Baltic Sea, Europeanization in close relationship with the Holy See, and reform in the relation between the Church and the public. He combined the ideals of Gregorian Reform with loyal support of a strong monarchical power.

Absalon was born into the powerful Hvide clan, and owned great land possessions. He endowed several church institutions, most prominently his family's Sorø Abbey. He was granted lands by the crown, and built the first fortification of the city that evolved into modern-day Copenhagen. His titles were passed on to his nephews Anders Sunesen and Peder Sunesen. He died in 1201, and was interred at Sorø Abbey.

Gioventù[modifica | modifica wikitesto]

Absalon nacque nel 1128 circa in Selandia. Per via del suo nome, insolito in Danimarca, si è ipotizzato che potesse essere stato battezzato nell'onomastico danese di "Absalon", il 30 ottobre.[1] Era il figlio di Asser Rig, esponente di spicco del clan Hvide di Fjenneslev in Selandia,[2] e Inger Eriksdotter. Era anche imparentato con Eskil arcivescovo di Lund.[1] Crebbe nel castello di suo padre, insieme al suo fratello maggiore Esbern Snare e il giovane principe Valdemaro che sarebbe diventato re Valdemaro I di Danimarca.[3] Durante la guerra civile successiva alla morte di Eric III di Danimarca nel 1146, Absalon viaggiò fino a Parigi per studiare teologia, mentre Esbern combattè per l'ascesa al trono di Valdemaro. Influenzato a Parigi dagli ideali della Riforma gregoriana sull'indipendenza ecclesiastica dal dominio monarchico,[4] conobbe e diventò amico del canonico Guglielmo di Æbelholt all'abbazia di Sainte-Geneviève, il quale fu fatto abate dell'abbazia di Eskilsø.[1]

Absalon apparve per la prima volta nelle coeve cronache Gesta Danorum redatte da Sassone Grammatico alla fine della guerra civile, in occasione delle trattative per l'accordo di pace tra Sweyn III e Valdemaro al priorato di Sant'Albano a Odense.[1] Fu poi ospite al seguente banchetto a Roskilde organizzato nel 1157 da Sweyn per i suoi rivali Canuto V e Valdemaro. In quest'occasione, sia Absalon sia Valdemaro riuscirono a sfuggire all'assassinio da parte di Sweyn III, e scapparono nello Jutland, ove Sweyn li inseguì.[2] Absalon probabilmente non prese parte nella successiva battaglia della brughiera di Grathe nel 1157, dove Sweyn fu sconfitto e ucciso, la quale portò all'ascesa di Valdemaro al trono danese. Nel Venerdì santo del 1158, il vescovo Asser di Roskilde morì, così Absalon prese la carica di vescovo di Roskilde grazie all'aiuto di Valdemaro,[1] come ricompensa per il sostegno della famiglia Hvide.[5]

Vescovo e consigliere[modifica | modifica wikitesto]

Absalon era uno stretto consigliere di Valdemaro, e il principale promotore delle crociate danesi contro i Venedi.[3] Durante la guerra civile danese, la Danimarca era stata esposta alle incursioni costiere dei Venedi.[5] L'intenzione di Absalon era quella di liberare il Mar Baltico dai pirati venedi che abitavano la zona litorale meridionale, poi chiamata Pomerania. I pirati avevano fatto incursioni sulle coste danesi durante la guerra civile di Sweyn III, Canuto V e Valdemaro, al punto che, al momento dell'ascesa al trono di Valdemaro, un terzo del territorio danese risultava devastata e spopolato.[2] Absalon formò una flotta di protezione, costruì difese costiere e condusse diverse campagne contro i Venedi.[5] Sostenne persino il perdono dei precedenti nemici di Valdemaro, che contribuì a stabilizzare la Danimarca all'interno.[1]

Campagne contro i Venedi[modifica | modifica wikitesto]

Bishop Absalon topples the god Svantevit at Arkona, as imagined by Laurits Tuxen

La prima spedizione contro i Venedi condotta da Absalon in persona cominciò nel 1160.[2] Sebbene di successo, non si arrivò a una vittoria duratura.[1] What started out as mere retribution, eventually evolved into full-fledged campaigns of expansion with religious motives.[5] In 1164 began twenty years of crusades against the Wends, sometimes with the help of German duke Henry the Lion, sometimes in opposition to him.[1]

In 1168 the chief Wendish fortress at Arkona in Rügen, containing the sanctuary of their god Svantevit, was conquered. The Wends agreed to accept Danish suzerainty and the Christian religion at the same time. From Arkona, Absalon proceeded by sea to Charenza, in the midst of Rügen, the political capital of the Wends and an all but impregnable stronghold. But the unexpected fall of Arkona had terrified the garrison, which surrendered unconditionally at the first appearance of the Danish ships. Absalon, with only Bishop Sweyn of Aarhus and twelve "housecarls", thereupon disembarked, passed between a double row of Wendish warriors, 6000 strong, along the narrow path winding among the morasses, to the gates of the fortress, and, proceeding to the temple of the seven-headed god Rugievit, caused the idol to be hewn down, dragged forth and burnt. The whole population of Garz was then baptized, and Absalon laid the foundations of twelve churches in the isle of Rügen.[2] Rügen was then subjected to Absalon's Bishopric of Roskilde.[5]

The destruction of this chief sally-port of the Wendish pirates enabled Absalon to considerably reduce the Danish fleet. But he continued to keep a watchful eye over the Baltic, and in 1170 destroyed another pirate stronghold, farther eastward, at Dziwnów on the isle of Wolin. Absalon's last military exploit came in 1184, off Stralsund at Whitsun, when he soundly defeated a Pomeranian fleet that had attacked Denmark's vassal, Jaromar of Rügen.[2]

Policies[modifica | modifica wikitesto]

Absalon's main political goal was to free Denmark from entanglements with the Holy Roman Empire.[2] Absalon reformed the Danish church organisation to closer match Holy See praxis, and worked to keep Denmark a close ally of the Holy See.[3] However, during the schism between Pope Alexander III and Antipope Victor IV, Absalon stayed loyal to Valdemar even as he joined the Holy Roman Emperor Frederick Barbarossa in supporting Victor IV.[5] This caused a split within the Danish church, as it possibly forced Eskil of Lund into exile around 1161,[3] despite Abaslon's attempts to keep the Danish church united.[1] It was contrary to Absalon's advice and warnings that Valdemar I rendered fealty to the emperor Frederick Barbarossa at Dole in 1162.[2] When Valdemar returned to Denmark, he was convinced to strengthen the Danevirke fortifications at the German border, with the support of Absalon.[1]

Absalon built churches and monasteries, supporting international religious orders like the Cistercians and Augustinians, founding schools and doing his utmost to promote civilization and enlightenment.[2] In 1162, Absalon transformed the Sorø Abbey of his family from Benedictine to Cistercian, granting it lands from his personal holdings. In 1167, Absalon was granted the land around the city of Havn (English: "Harbour"), and built there a castle for coastal defense against the Wends.[3] Havn quickly expanded into one of Scandinavia's most important centers of trade, and eventually evolved into modern-day Copenhagen.[1] It was also Absalon who held the first Danish Synod at Lund in 1167.[2] He was interested in history and culture, and commissioned Saxo Grammaticus to write Gesta Danorum, a comprehensive chronicle of the history of the Danes.[5] In 1171, Absalon issued the "Zealand church law" (Template:Lang-da), which reduced the number of Canonical Law offenses for which the church could fine the public, while instituting the tithe payment system. Violation of the law was specified as subject to a secular legal process.[6]

Archbishop of Lund[modifica | modifica wikitesto]

Archbishop Eskil returned from exile in 1167. Eskil agreed on canonizing Valdemar's father Knud Lavard in 1170, with Absalon assisting him at the feast. When Eskil stepped down as Archbishop of Lund in 1177, he chose Absalon as his successor.[5] Absalon initially resisted the new position, as he did not want to lose his power position on Zealand, but complied with Papal orders to do so in 1178.[1] By a unique Papal dispensation, Absalon was allowed to simultaneously maintain his post as Bishop of Roskilde.[3] As the Archbishop of Lund, Absalon utilized ombudsmen from Zealand, demanded unfree labour from the peasantry, and instituted tithes.[5] He was a harsh and effective ruler, who cleared all Orthodox Christian liturgical remnants in favour of Papal standards.[3] A rebellion in the Scanian peasantry forced him to flee to Zealand in 1180, but he returned and subdued the Scanians with the help of Valdemar.[5]

Valdemar died in 1182 and was succeeded by his son, Canute VI, whom Absalon also served as counsellor.[5] Under Canute VI, Absalon was the chief policymaker in Danish politics.[4] Absalon kept his hostile attitude to the Holy Roman Empire. On the accession of Canute VI in 1182, an imperial ambassador arrived at Roskilde to get the new king to swear fealty to Frederick Barbarossa, but Absalon resolutely withstood him.[2]

Death[modifica | modifica wikitesto]

When Absalon retired from military service in 1184 at the age of fifty-seven, he resigned the command of fleets and armies to younger men, like Duke Valdemar, the later king Valdemar II. He instead confined himself to the administration of the Danish empire.[1] In 1192, Absalon made his nephew Template:ILL his successor as Bishop of Roskilde, while his other nephew Anders Sunesen was named the chancellor of Canute VI.[5] Absalon died at Sorø Abbey on 21 March 1201, 73 years old, with his last will granting his personal holdings to the Abbey, apart from Fjenneslev which went to Esbern Snarre. He had already given Copenhagen to the Bishopric of Roskilde.[1] Absalon was interred at Sorø Abbey,[5] and was succeeded as Archbishop of Lund by Anders Sunesen.[3]

Legacy[modifica | modifica wikitesto]

Equestrian statue from 1902 commemorating Absalon on Højbro Plads, Copenhagen

Saxo Grammaticus' Gesta Danorum was not finished until after the death of Absalon,[3] but Absalon was one of the chief heroic figures of the chronicle, which was to be the main source of knowledge about early Danish history.[5] Absalon left a legacy as the foremost politician and churchfather of Denmark in the 12th century.[3] Absalon was equally great as churchman, statesman, and warrior. His policy of expansion was to give Denmark the dominion of the Baltic for three generations. That he enjoyed warfare there can be no doubt; yet he was not like the ordinary fighting bishops of the Middle Ages, whose sole indication of their religious role was to avoid the shedding of blood by using a mace in battle instead of a sword. Absalon never neglected his ecclesiastical duties.[2]

In the 2000s, "Absalon" was adopted as the name for a class of Royal Danish Navy vessels, and the lead vessel of the class. HDMS Absalon (L16) and Esbern Snare (L17) were launched and commissioned by Denmark in 2004 and 2005.[7][8]

  1. ^ a b c d e f g h i j k l m n Carl Frederik Bricka (ed.), Dansk Biografisk Lexikon, vol. I [Aaberg – Beaumelle], 1887. A.D. Jørgensen, "Absalon" pp.70–81
  2. ^ a b c d e f g h i j k l (EN) Hugh Chisholm (a cura di), Absalon, in Enciclopedia Britannica, XI, Cambridge University Press, 1911.
  3. ^ a b c d e f g h i j Absalon at Gyldendals Åbne Encyklopædi
  4. ^ a b "Gads Historieleksikon", 3rd edition, 2006. Paul Ulff-Møller, "Absalon", p.10. ISBN 978-87-12-04259-4
  5. ^ a b c d e f g h i j k l m n Stefan Pajung, Artikel: Absalon ca. 1128–1201, Aarhus University, 20 June 2009
  6. ^ Kirkelove at Gyldendals Åbne Encyklopædi
  7. ^ Forsvaret.dk.
  8. ^ Absalon Class Combat / Flexible Support Ship, Denmark naval-technology.com Archiviato il 15 September 2008 Data nell'URL non combaciante: 15 settembre 2008 in Internet Archive.