Numero ettagonale

Da Wikipedia, l'enciclopedia libera.
I primi cinque numeri ettagonali

Un numero ettagonale è un numero poligonale che rappresenta un ettagono di n lati. L'n-esimo numero ettagonale può essere calcolato con la formula:

.

I primi 20 numeri ettagonali sono:

1, 7, 18, 34, 55, 81, 112, 148, 189, 235, 286, 342, 403, 469, 540, 616, 697, 783, 874, 970, 1071, 1177, 1288, 1404, 1525, 1651, 1782, 1918, 2059, 2205, 2356, 2512, 2673, 2839, 3010, 3186, 3367, 3553, 3744, 3940, 4141, 4347, 4558, 4774, 4995, 5221, 5452, 5688 (sequenza A000566 dell'OEIS).

La parità dei numeri ettagonali segue il modello dispari-dispari-pari-pari. Come nel caso dei numeri quadrati, la radice digitale in base 10 di un numero ettagonale può essero solo 1, 4, 7 o 9.

Il quintuplo di un numero ettagonale aumentato di 1 è un numero triangolare.

La formula per la somma dei reciproci dei numeri ettagonali è data da

[1]

La funzione generatrice per i numeri ettagonali è

Numeri ettagonali generalizzati[modifica | modifica wikitesto]

Un numero ettagonale generalizzato è ottenuto dalla formula

dove Tn è l'n-esimo numero triangolare. I primi numeri ettagonali generalizzati sono:

1, 4, 7, 13, 18, 27, 34, 46, 55, 70, 81, 99, 112 (sequenza A085787 dell'OEIS).

Ogni altro numero ettagonale generalizzato è un regolare numero ettagonale. Esclusi 1 e 70, nessun altro numero ettagonale generalizzato è anche un numero di Pell.[2]

Voci correlate[modifica | modifica wikitesto]

Note[modifica | modifica wikitesto]

  1. ^ Beyond the Basel Problem: Sums of Reciprocals of Figurate Numbers
  2. ^ B. Srinivasa Rao, "Numeri ettagonali nella Sequenza di Pell e equazioni diofantee " Fib. Quart. 43 3: 194
Matematica Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica