Tavola degli integrali indefiniti di funzioni trigonometriche: differenze tra le versioni

Da Wikipedia, l'enciclopedia libera.
Vai alla navigazione Vai alla ricerca
Contenuto cancellato Contenuto aggiunto
Nessun oggetto della modifica
Nessun oggetto della modifica
Riga 5: Riga 5:
In questa pagina si assume che ''c'' sia una costante diversa da 0.
In questa pagina si assume che ''c'' sia una costante diversa da 0.


== Integrali di funzioni trigonometriche contenenti solo [[Seno (trigonometria)|sin]] ==
== Integrali di funzioni trigonometriche contenenti solo il seno ==
{{vedi anche|seno (trigonometria)}}


: <math>\int\sin cx\;dx = -\frac{1}{c}\cos cx</math>
: <math>\int\mathrm{sen} \, cx\;dx = -\frac{1}{c}\cos cx</math>


: <math>\int\sin^n cx\;dx = -\frac{\sin^{n-1} cx\cos cx}{nc} + \frac{n-1}{n}\int\sin^{n-2} cx\;dx \qquad\mbox{(per }n>0\mbox{)}</math>
: <math>\int\mathrm{sen}^n cx\;dx = -\frac{\mathrm{sen}^{n-1} cx\cos cx}{nc} + \frac{n-1}{n}\int\mathrm{sen}^{n-2} cx\;dx \qquad\mbox{(per }n>0\mbox{)}</math>


: <math>\int x\sin cx\;dx = \frac{\sin cx}{c^2}-\frac{x\cos cx}{c}</math>
: <math>\int x\mathrm{sen} \, cx\;dx = \frac{\mathrm{sen} \, cx}{c^2}-\frac{x\cos cx}{c}</math>


: <math>\int x^n\sin cx\;dx = -\frac{x^n}{c}\cos cx+\frac{n}{c}\int x^{n-1}\cos cx\;dx \qquad\mbox{(per }n>0\mbox{)}</math>
: <math>\int x^n\mathrm{sen} \, cx\;dx = -\frac{x^n}{c}\cos cx+\frac{n}{c}\int x^{n-1}\cos cx\;dx \qquad\mbox{(per }n>0\mbox{)}</math>


: <math>\int\frac{\sin cx}{x} dx = \sum_{i=0}^\infty (-1)^i\frac{(cx)^{2i+1}}{(2i+1)\cdot (2i+1)!}</math>
: <math>\int\frac{\mathrm{sen} \, cx}{x} dx = \sum_{i=0}^\infty (-1)^i\frac{(cx)^{2i+1}}{(2i+1)\cdot (2i+1)!}</math>


: <math>\int\frac{\sin cx}{x^n} dx = -\frac{\sin cx}{(n-1)x^{n-1}} + \frac{c}{n-1}\int\frac{\cos cx}{x^{n-1}} dx</math>
: <math>\int\frac{\mathrm{sen} \, cx}{x^n} dx = -\frac{\mathrm{sen} \, cx}{(n-1)x^{n-1}} + \frac{c}{n-1}\int\frac{\cos cx}{x^{n-1}} dx</math>


: <math>\int\frac{dx}{\sin cx} = \frac{1}{c}\ln \left|\tan\frac{cx}{2}\right|</math>
: <math>\int\frac{dx}{\mathrm{sen} \, cx} = \frac{1}{c}\ln \left|\tan\frac{cx}{2}\right|</math>


: <math>\int\frac{dx}{\sin^n cx} = \frac{\cos cx}{c(1-n) \sin^{n-1} cx}+\frac{n-2}{n-1}\int\frac{dx}{\sin^{n-2}cx} \qquad\mbox{(per }n>1\mbox{)}</math>
: <math>\int\frac{dx}{\mathrm{sen}^n cx} = \frac{\cos cx}{c(1-n) \mathrm{sen}^{n-1} cx}+\frac{n-2}{n-1}\int\frac{dx}{\mathrm{sen}^{n-2}cx} \qquad\mbox{(per }n>1\mbox{)}</math>


: <math>\int\frac{dx}{1\pm\sin cx} = \frac{1}{c}\tan\left(\frac{cx}{2}\mp\frac{\pi}{4}\right)</math>
: <math>\int\frac{dx}{1\pm\mathrm{sen} \, cx} = \frac{1}{c}\tan\left(\frac{cx}{2}\mp\frac{\pi}{4}\right)</math>


: <math>\int\frac{x\;dx}{1+\sin cx} = \frac{x}{c}\tan\left(\frac{cx}{2} - \frac{\pi}{4}\right)+\frac{2}{c^2}\ln\left|\cos\left(\frac{cx}{2}-\frac{\pi}{4}\right)\right|</math>
: <math>\int\frac{x\;dx}{1+\mathrm{sen} \, cx} = \frac{x}{c}\tan\left(\frac{cx}{2} - \frac{\pi}{4}\right)+\frac{2}{c^2}\ln\left|\cos\left(\frac{cx}{2}-\frac{\pi}{4}\right)\right|</math>


: <math>\int\frac{x\;dx}{1-\sin cx} = \frac{x}{c}\cot\left(\frac{\pi}{4} - \frac{cx}{2}\right)+\frac{2}{c^2}\ln\left|\sin\left(\frac{\pi}{4}-\frac{cx}{2}\right)\right|</math>
: <math>\int\frac{x\;dx}{1-\mathrm{sen} \, cx} = \frac{x}{c}\cot\left(\frac{\pi}{4} - \frac{cx}{2}\right)+\frac{2}{c^2}\ln\left|\mathrm{sen} \, \left(\frac{\pi}{4}-\frac{cx}{2}\right)\right|</math>


: <math>\int\frac{\sin cx\;dx}{1\pm \sin cx} = \pm x+\frac{1}{c}\tan\left(\frac{\pi}{4}\mp\frac{cx}{2}\right)</math>
: <math>\int\frac{\mathrm{sen} \, cx\;dx}{1\pm \mathrm{sen} \, cx} = \pm x+\frac{1}{c}\tan\left(\frac{\pi}{4}\mp\frac{cx}{2}\right)</math>


: <math>\int\sin c_1x\sin c_2x\;dx = \frac{\sin(c_1-c_2)x}{2(c_1-c_2)}-\frac{\sin(c_1+c_2)x}{2(c_1+c_2)} \qquad\mbox{(per }|c_1|\neq|c_2|\mbox{)}</math>
: <math>\int\mathrm{sen} \, c_1x\mathrm{sen} \, c_2x\;dx = \frac{\mathrm{sen}(c_1-c_2)x}{2(c_1-c_2)}-\frac{\mathrm{sen} (c_1+c_2)x}{2(c_1+c_2)} \qquad\mbox{(per }|c_1|\neq|c_2|\mbox{)}</math>


== Integrali di funzioni trigonometriche contenenti solo [[Coseno|cos]] ==
== Integrali di funzioni trigonometriche contenenti solo il coseno ==
{{vedi anche|coseno}}


: <math>\int\cos cx\;dx = \frac{1}{c}\sin cx</math>
: <math>\int\cos cx\;dx = \frac{1}{c}\mathrm{sen} \, cx</math>


: <math>\int\cos^n cx\;dx = \frac{\cos^{n-1} cx\mathrm{sen} \, cx}{nc} + \frac{n-1}{n}\int\cos^{n-2} cx\;dx \qquad\mbox{(per }n>0\mbox{)}</math>


: <math>\int\cos^n cx\;dx = \frac{\cos^{n-1} cx\sin cx}{nc} + \frac{n-1}{n}\int\cos^{n-2} cx\;dx \qquad\mbox{(per }n>0\mbox{)}</math>
: <math>\int x\cos cx\;dx = \frac{\cos cx}{c^2} + \frac{x\mathrm{sen} \, cx}{c}</math>


: <math>\int x\cos cx\;dx = \frac{\cos cx}{c^2} + \frac{x\sin cx}{c}</math>
: <math>\int x^n\cos cx\;dx = \frac{x^n\mathrm{sen} \, cx}{c} - \frac{n}{c}\int x^{n-1}\mathrm{sen} \, cx\;dx</math>

: <math>\int x^n\cos cx\;dx = \frac{x^n\sin cx}{c} - \frac{n}{c}\int x^{n-1}\sin cx\;dx</math>


: <math>\int\frac{\cos cx}{x} dx = \ln|cx|+\sum_{i=1}^\infty (-1)^i\frac{(cx)^{2i}}{2i\cdot(2i)!}</math>
: <math>\int\frac{\cos cx}{x} dx = \ln|cx|+\sum_{i=1}^\infty (-1)^i\frac{(cx)^{2i}}{2i\cdot(2i)!}</math>


: <math>\int\frac{\cos cx}{x^n} dx = -\frac{\cos cx}{(n-1)x^{n-1}}-\frac{c}{n-1}\int\frac{\sin cx}{x^{n-1}} dx \qquad\mbox{(per }n\neq 1\mbox{)}</math>
: <math>\int\frac{\cos cx}{x^n} dx = -\frac{\cos cx}{(n-1)x^{n-1}}-\frac{c}{n-1}\int\frac{\mathrm{sen} \, cx}{x^{n-1}} dx \qquad\mbox{(per }n\neq 1\mbox{)}</math>


: <math>\int\frac{dx}{\cos cx} = \frac{1}{c}\ln\left|\tan\left(\frac{cx}{2}+\frac{\pi}{4}\right)\right|</math>
: <math>\int\frac{dx}{\cos cx} = \frac{1}{c}\ln\left|\tan\left(\frac{cx}{2}+\frac{\pi}{4}\right)\right|</math>


: <math>\int\frac{dx}{\cos^n cx} = \frac{\sin cx}{c(n-1) cos^{n-1} cx} + \frac{n-2}{n-1}\int\frac{dx}{\cos^{n-2} cx} \qquad\mbox{(per }n>1\mbox{)}</math>
: <math>\int\frac{dx}{\cos^n cx} = \frac{\mathrm{sen} \, cx}{c(n-1) cos^{n-1} cx} + \frac{n-2}{n-1}\int\frac{dx}{\cos^{n-2} cx} \qquad\mbox{(per }n>1\mbox{)}</math>


: <math>\int\frac{dx}{1+\cos cx} = \frac{1}{c}\tan\frac{cx}{2}</math>
: <math>\int\frac{dx}{1+\cos cx} = \frac{1}{c}\tan\frac{cx}{2}</math>
Riga 58: Riga 59:
: <math>\int\frac{x\;dx}{1+\cos cx} = \frac{x}{c}\tan({cx}/{2}) + \frac{2}{c^2}\ln\left|\cos\frac{cx}{2}\right|</math>
: <math>\int\frac{x\;dx}{1+\cos cx} = \frac{x}{c}\tan({cx}/{2}) + \frac{2}{c^2}\ln\left|\cos\frac{cx}{2}\right|</math>


: <math>\int\frac{x\;dx}{1-\cos cx} = -\frac{x}{x}\cot({cx}/{2})+\frac{2}{c^2}\ln\left|\sin\frac{cx}{2}\right|</math>
: <math>\int\frac{x\;dx}{1-\cos cx} = -\frac{x}{x}\cot({cx}/{2})+\frac{2}{c^2}\ln\left|\mathrm{sen}\frac{cx}{2}\right|</math>


: <math>\int\frac{\cos cx\;dx}{1+\cos cx} = x - \frac{1}{c}\tan\frac{cx}{2}</math>
: <math>\int\frac{\cos cx\;dx}{1+\cos cx} = x - \frac{1}{c}\tan\frac{cx}{2}</math>
Riga 64: Riga 65:
: <math>\int\frac{\cos cx\;dx}{1-\cos cx} = -x-\frac{1}{c}\cot\frac{cx}{2}</math>
: <math>\int\frac{\cos cx\;dx}{1-\cos cx} = -x-\frac{1}{c}\cot\frac{cx}{2}</math>


: <math>\int\cos c_1x\cos c_2x\;dx = \frac{\sin(c_1-c_2)x}{2(c_1-c_2)}+\frac{\sin(c_1+c_2)x}{2(c_1+c_2)} \qquad\mbox{(per }|c_1|\neq|c_2|\mbox{)}</math>
: <math>\int\cos c_1x\cos c_2x\;dx = \frac{\mathrm{sen}(c_1-c_2)x}{2(c_1-c_2)}+\frac{\mathrm{sen}(c_1+c_2)x}{2(c_1+c_2)} \qquad\mbox{(per }|c_1|\neq|c_2|\mbox{)}</math>


== Integrali di funzioni trigonometriche contenenti solo [[Tangente (trigonometria)|tan]] ==
== Integrali di funzioni trigonometriche contenenti solo tangente ==
{{vedi anche|tangente (trigonometria)}}


: <math>\int\tan cx\;dx = -\frac{1}{c}\ln|\cos cx|</math>
: <math>\int\tan cx\;dx = -\frac{1}{c}\ln|\cos cx|</math>
Riga 72: Riga 74:
: <math>\int\tan^n cx\;dx = \frac{1}{c(n-1)}\tan^{n-1} cx-\int\tan^{n-2} cx\;dx \qquad\mbox{(per }n\neq 1\mbox{)}</math>
: <math>\int\tan^n cx\;dx = \frac{1}{c(n-1)}\tan^{n-1} cx-\int\tan^{n-2} cx\;dx \qquad\mbox{(per }n\neq 1\mbox{)}</math>


: <math>\int\frac{dx}{\tan cx + 1} = \frac{x}{2} + \frac{1}{2c}\ln|\sin cx + \cos cx|</math>
: <math>\int\frac{dx}{\tan cx + 1} = \frac{x}{2} + \frac{1}{2c}\ln|\mathrm{sen} \, cx + \cos cx|</math>


: <math>\int\frac{dx}{\tan cx - 1} = -\frac{x}{2} + \frac{1}{2c}\ln|\sin cx - \cos cx|</math>
: <math>\int\frac{dx}{\tan cx - 1} = -\frac{x}{2} + \frac{1}{2c}\ln|\mathrm{sen} \, cx - \cos cx|</math>


: <math>\int\frac{\tan cx\;dx}{\tan cx + 1} = \frac{x}{2} - \frac{1}{2c}\ln|\sin cx + \cos cx|</math>
: <math>\int\frac{\tan cx\;dx}{\tan cx + 1} = \frac{x}{2} - \frac{1}{2c}\ln|\mathrm{sen} \, cx + \cos cx|</math>


: <math>\int\frac{\tan cx\;dx}{\tan cx - 1} = \frac{x}{2} + \frac{1}{2c}\ln|\sin cx - \cos cx|</math>
: <math>\int\frac{\tan cx\;dx}{\tan cx - 1} = \frac{x}{2} + \frac{1}{2c}\ln|\mathrm{sen} \, cx - \cos cx|</math>


== Integrali di funzioni trigonometriche contenenti solo [[Secante (trigonometria)|sec]] ==
== Integrali di funzioni trigonometriche contenenti solo secante ==
{{vedi anche|secante (trigonometria)}}


:<math>\int \sec{cx} \, dx = \frac{1}{c}\ln{\left| \sec{cx} + \tan{cx}\right|}</math>
:<math>\int \sec{cx} \, dx = \frac{1}{c}\ln{\left| \sec{cx} + \tan{cx}\right|}</math>


:<math>\int \sec^n{cx} \, dx = \frac{\sec^{n-1}{cx} \sin {cx}}{c(n-1)} \,+\, \frac{n-2}{n-1}\int \sec^{n-2}{cx} \, dx \qquad \mbox{ per }n \ne 1,\,c \ne 0</math>
:<math>\int \sec^n{cx} \, dx = \frac{\sec^{n-1}{cx} \mathrm{sen} \, {cx}}{c(n-1)} \,+\, \frac{n-2}{n-1}\int \sec^{n-2}{cx} \, dx \qquad \mbox{ per }n \ne 1,\,c \ne 0</math>


== Integrali di funzioni trigonometriche contenenti solo [[Cosecante|csc]] ==
== Integrali di funzioni trigonometriche contenenti solo cosecante ==
{{vedi anche|cosecante (trigonometria)}}


:<math>\int \csc{cx} \, dx = -\frac{1}{c}\ln{\left| \csc{cx} + \cot{cx}\right|}</math>
:<math>\int \csc{cx} \, dx = -\frac{1}{c}\ln{\left| \csc{cx} + \cot{cx}\right|}</math>
Riga 92: Riga 96:
:<math>\int \csc^n{cx} \, dx = -\frac{\csc^{n-1}{cx} \cos{cx}}{c(n-1)} \,+\, \frac{n-2}{n-1}\int \csc^{n-2}{cx} \, dx \qquad \mbox{ per }n \ne 1,\,c \ne 0</math>
:<math>\int \csc^n{cx} \, dx = -\frac{\csc^{n-1}{cx} \cos{cx}}{c(n-1)} \,+\, \frac{n-2}{n-1}\int \csc^{n-2}{cx} \, dx \qquad \mbox{ per }n \ne 1,\,c \ne 0</math>


== Integrali di funzioni trigonometriche contenenti solo [[Cotangente|cot]] ==
== Integrali di funzioni trigonometriche contenenti solo cotangente ==
{{vedi anche|cotangente (trigonometria)}}


: <math>\int\cot cx\;dx = \frac{1}{c}\ln|\sin cx|</math>
: <math>\int\cot cx\;dx = \frac{1}{c}\ln|\mathrm{sen} \, cx|</math>


: <math>\int\cot^n cx\;dx = -\frac{1}{c(n-1)}\cot^{n-1} cx - \int\cot^{n-2} cx\;dx \qquad\mbox{(per }n\neq 1\mbox{)}</math>
: <math>\int\cot^n cx\;dx = -\frac{1}{c(n-1)}\cot^{n-1} cx - \int\cot^{n-2} cx\;dx \qquad\mbox{(per }n\neq 1\mbox{)}</math>
Riga 102: Riga 107:
: <math>\int\frac{dx}{1 - \cot cx} = \int\frac{\tan cx\;dx}{\tan cx-1}</math>
: <math>\int\frac{dx}{1 - \cot cx} = \int\frac{\tan cx\;dx}{\tan cx-1}</math>


== Integrali di funzioni trigonometriche contenenti [[Seno (trigonometria)|sin]] e [[Coseno|cos]] ==
== Integrali di funzioni trigonometriche contenenti seno e coseno==



: <math>\int\frac{dx}{\cos cx\pm\sin cx} = \frac{1}{c\sqrt{2}}\ln\left|\tan\left(\frac{cx}{2}\pm\frac{\pi}{8}\right)\right|</math>
: <math>\int\frac{dx}{\cos cx\pm\mathrm{sen} \, cx} = \frac{1}{c\sqrt{2}}\ln\left|\tan\left(\frac{cx}{2}\pm\frac{\pi}{8}\right)\right|</math>


: <math>\int\frac{dx}{(\cos cx\pm\sin cx)^2} = \frac{1}{2c}\tan\left(cx\mp\frac{\pi}{4}\right)</math>
: <math>\int\frac{dx}{(\cos cx\pm\mathrm{sen} \, cx)^2} = \frac{1}{2c}\tan\left(cx\mp\frac{\pi}{4}\right)</math>


: <math>\int\frac{\cos cx\;dx}{\cos cx + \sin cx} = \frac{x}{2} + \frac{1}{2c}\ln\left|\sin cx + \cos cx\right|</math>
: <math>\int\frac{\cos cx\;dx}{\cos cx + \mathrm{sen} \, cx} = \frac{x}{2} + \frac{1}{2c}\ln\left|\mathrm{sen} \,\mathrm{sen} \, cx + \cos cx\right|</math>


: <math>\int\frac{\cos cx\;dx}{\cos cx - \sin cx} = \frac{x}{2} - \frac{1}{2c}\ln\left|\sin cx - \cos cx\right|</math>
: <math>\int\frac{\cos cx\;dx}{\cos cx - \mathrm{sen} \, cx} = \frac{x}{2} - \frac{1}{2c}\ln\left|\mathrm{sen} \, cx - \cos cx\right|</math>


: <math>\int\frac{\sin cx\;dx}{\cos cx + \sin cx} = \frac{x}{2} - \frac{1}{2c}\ln\left|\sin cx + \cos cx\right|</math>
: <math>\int\frac{\mathrm{sen} \, cx\;dx}{\cos cx + \mathrm{sen} \, cx} = \frac{x}{2} - \frac{1}{2c}\ln\left|\mathrm{sen} \, cx + \cos cx\right|</math>


: <math>\int\frac{\sin cx\;dx}{\cos cx - \sin cx} = -\frac{x}{2} - \frac{1}{2c}\ln\left|\sin cx - \cos cx\right|</math>
: <math>\int\frac{\mathrm{sen} \, cx\;dx}{\cos cx - \mathrm{sen} \, cx} = -\frac{x}{2} - \frac{1}{2c}\ln\left|\mathrm{sen} \, cx - \cos cx\right|</math>


: <math>\int\frac{\cos cx\;dx}{\sin cx(1+\cos cx)} = -\frac{1}{4c}\tan^2\frac{cx}{2}+\frac{1}{2c}\ln\left|\tan\frac{cx}{2}\right|</math>
: <math>\int\frac{\cos cx\;dx}{\mathrm{sen} \, cx(1+\cos cx)} = -\frac{1}{4c}\tan^2\frac{cx}{2}+\frac{1}{2c}\ln\left|\tan\frac{cx}{2}\right|</math>


: <math>\int\frac{\cos cx\;dx}{\sin cx(1-\cos cx)} = -\frac{1}{4c}\cot^2\frac{cx}{2}-\frac{1}{2c}\ln\left|\tan\frac{cx}{2}\right|</math>
: <math>\int\frac{\cos cx\;dx}{\mathrm{sen} \, cx(1-\cos cx)} = -\frac{1}{4c}\cot^2\frac{cx}{2}-\frac{1}{2c}\ln\left|\tan\frac{cx}{2}\right|</math>


: <math>\int\frac{\sin cx\;dx}{\cos cx(1+\sin cx)} = \frac{1}{4c}\cot^2\left(\frac{cx}{2}+\frac{\pi}{4}\right)+\frac{1}{2c}\ln\left|\tan\left(\frac{cx}{2}+\frac{\pi}{4}\right)\right|</math>
: <math>\int\frac{\mathrm{sen} \, cx\;dx}{\cos cx(1+\mathrm{sen} \, cx)} = \frac{1}{4c}\cot^2\left(\frac{cx}{2}+\frac{\pi}{4}\right)+\frac{1}{2c}\ln\left|\tan\left(\frac{cx}{2}+\frac{\pi}{4}\right)\right|</math>


: <math>\int\frac{\sin cx\;dx}{\cos cx(1-\sin cx)} = \frac{1}{4c}\tan^2\left(\frac{cx}{2}+\frac{\pi}{4}\right)-\frac{1}{2c}\ln\left|\tan\left(\frac{cx}{2}+\frac{\pi}{4}\right)\right|</math>
: <math>\int\frac{\mathrm{sen} \, cx\;dx}{\cos cx(1-\mathrm{sen} \, cx)} = \frac{1}{4c}\tan^2\left(\frac{cx}{2}+\frac{\pi}{4}\right)-\frac{1}{2c}\ln\left|\tan\left(\frac{cx}{2}+\frac{\pi}{4}\right)\right|</math>


: <math>\int\sin cx\cos cx\;dx = \frac{-1}{2c}\cos^2 cx</math>
: <math>\int\mathrm{sen} \, cx\cos cx\;dx = \frac{-1}{2c}\cos^2 cx</math>


: <math>\int\sin c_1x\cos c_2x\;dx = -\frac{\cos(c_1+c_2)x}{2(c_1+c_2)}-\frac{\cos(c_1-c_2)x}{2(c_1-c_2)} \qquad\mbox{(per }|c_1|\neq|c_2|\mbox{)}</math>
: <math>\int\mathrm{sen} \, c_1x\cos c_2x\;dx = -\frac{\cos(c_1+c_2)x}{2(c_1+c_2)}-\frac{\cos(c_1-c_2)x}{2(c_1-c_2)} \qquad\mbox{(per }|c_1|\neq|c_2|\mbox{)}</math>


: <math>\int\sin^n cx\cos cx\;dx = \frac{1}{c(n+1)}\sin^{n+1} cx \qquad\mbox{(per }n\neq 1\mbox{)}</math>
: <math>\int\mathrm{sen} \,^n cx\cos cx\;dx = \frac{1}{c(n+1)}\mathrm{sen} \,^{n+1} cx \qquad\mbox{(per }n\neq 1\mbox{)}</math>


: <math>\int\sin cx\cos^n cx\;dx = -\frac{1}{c(n+1)}\cos^{n+1} cx \qquad\mbox{(per }n\neq 1\mbox{)}</math>
: <math>\int\mathrm{sen} \, cx\cos^n cx\;dx = -\frac{1}{c(n+1)}\cos^{n+1} cx \qquad\mbox{(per }n\neq 1\mbox{)}</math>


: <math>\int\sin^n cx\cos^m cx\;dx = -\frac{\sin^{n-1} cx\cos^{m+1} cx}{c(n+m)}+\frac{n-1}{n+m}\int\sin^{n-2} cx\cos^m cx\;dx \qquad\mbox{(per }m,n>0\mbox{)}</math>
: <math>\int\mathrm{sen} \,^n cx\cos^m cx\;dx = -\frac{\mathrm{sen} \,^{n-1} cx\cos^{m+1} cx}{c(n+m)}+\frac{n-1}{n+m}\int\mathrm{sen} \,^{n-2} cx\cos^m cx\;dx \qquad\mbox{(per }m,n>0\mbox{)}</math>


: anche: <math>\int\sin^n cx\cos^m cx\;dx = \frac{\sin^{n+1} cx\cos^{m-1} cx}{c(n+m)} + \frac{m-1}{n+m}\int\sin^n cx\cos^{m-2} cx\;dx \qquad\mbox{(per }m,n>0\mbox{)}</math>
: anche: <math>\int\mathrm{sen} \,^n cx\cos^m cx\;dx = \frac{\mathrm{sen} \,^{n+1} cx\cos^{m-1} cx}{c(n+m)} + \frac{m-1}{n+m}\int\mathrm{sen} \,^n cx\cos^{m-2} cx\;dx \qquad\mbox{(per }m,n>0\mbox{)}</math>


: <math>\int\frac{dx}{\sin cx\cos cx} = \frac{1}{c}\ln\left|\tan cx\right|</math>
: <math>\int\frac{dx}{\mathrm{sen} \, cx\cos cx} = \frac{1}{c}\ln\left|\tan cx\right|</math>


: <math>\int\frac{dx}{\sin cx\cos^n cx} = \frac{1}{c(n-1)\cos^{n-1} cx}+\int\frac{dx}{\sin cx\cos^{n-2} cx} \qquad\mbox{(per }n\neq 1\mbox{)}</math>
: <math>\int\frac{dx}{\mathrm{sen} \, cx\cos^n cx} = \frac{1}{c(n-1)\cos^{n-1} cx}+\int\frac{dx}{\mathrm{sen} \, cx\cos^{n-2} cx} \qquad\mbox{(per }n\neq 1\mbox{)}</math>


: <math>\int\frac{dx}{\sin^n cx\cos cx} = -\frac{1}{c(n-1)\sin^{n-1} cx}+\int\frac{dx}{\sin^{n-2} cx\cos cx} \qquad\mbox{(per }n\neq 1\mbox{)}</math>
: <math>\int\frac{dx}{\mathrm{sen} \,^n cx\cos cx} = -\frac{1}{c(n-1)\mathrm{sen} \,^{n-1} cx}+\int\frac{dx}{\mathrm{sen} \,^{n-2} cx\cos cx} \qquad\mbox{(per }n\neq 1\mbox{)}</math>


: <math>\int\frac{\sin cx\;dx}{\cos^n cx} = \frac{1}{c(n-1)\cos^{n-1} cx} \qquad\mbox{(per }n\neq 1\mbox{)}</math>
: <math>\int\frac{\mathrm{sen} \, cx\;dx}{\cos^n cx} = \frac{1}{c(n-1)\cos^{n-1} cx} \qquad\mbox{(per }n\neq 1\mbox{)}</math>


: <math>\int\frac{\sin^2 cx\;dx}{\cos cx} = -\frac{1}{c}\sin cx+\frac{1}{c}\ln\left|\tan\left(\frac{\pi}{4}+\frac{cx}{2}\right)\right|</math>
: <math>\int\frac{\mathrm{sen} \,^2 cx\;dx}{\cos cx} = -\frac{1}{c}\mathrm{sen} \, cx+\frac{1}{c}\ln\left|\tan\left(\frac{\pi}{4}+\frac{cx}{2}\right)\right|</math>


: <math>\int\frac{\sin^2 cx\;dx}{\cos^n cx} = \frac{\sin cx}{c(n-1)\cos^{n-1}cx}-\frac{1}{n-1}\int\frac{dx}{\cos^{n-2}cx} \qquad\mbox{(per }n\neq 1\mbox{)}</math>
: <math>\int\frac{\mathrm{sen} \,^2 cx\;dx}{\cos^n cx} = \frac{\mathrm{sen} \, cx}{c(n-1)\cos^{n-1}cx}-\frac{1}{n-1}\int\frac{dx}{\cos^{n-2}cx} \qquad\mbox{(per }n\neq 1\mbox{)}</math>


: <math>\int\frac{\sin^n cx\;dx}{\cos cx} = -\frac{\sin^{n-1} cx}{c(n-1)} + \int\frac{\sin^{n-2} cx\;dx}{\cos cx} \qquad\mbox{(per }n\neq 1\mbox{)}</math>
: <math>\int\frac{\mathrm{sen} \,^n cx\;dx}{\cos cx} = -\frac{\mathrm{sen} \,\mathrm{sen} \,^{n-1} cx}{c(n-1)} + \int\frac{\mathrm{sen} \,\mathrm{sen} \,^{n-2} cx\;dx}{\cos cx} \qquad\mbox{(per }n\neq 1\mbox{)}</math>


: <math>\int\frac{\sin^n cx\;dx}{\cos^m cx} = \frac{\sin^{n+1} cx}{c(m-1)\cos^{m-1} cx}-\frac{n-m+2}{m-1}\int\frac{\sin^n cx\;dx}{\cos^{m-2} cx} \qquad\mbox{(per }m\neq 1\mbox{)}</math>
: <math>\int\frac{\mathrm{sen} \,^n cx\;dx}{\cos^m cx} = \frac{\mathrm{sen} \,^{n+1} cx}{c(m-1)\cos^{m-1} cx}-\frac{n-m+2}{m-1}\int\frac{\mathrm{sen} \,^n cx\;dx}{\cos^{m-2} cx} \qquad\mbox{(per }m\neq 1\mbox{)}</math>


: anche: <math>\int\frac{\sin^n cx\;dx}{\cos^m cx} = -\frac{\sin^{n-1} cx}{c(n-m)\cos^{m-1} cx}+\frac{n-1}{n-m}\int\frac{\sin^{n-2} cx\;dx}{\cos^m cx} \qquad\mbox{(per }m\neq n\mbox{)}</math>
: anche: <math>\int\frac{\mathrm{sen} \,^n cx\;dx}{\cos^m cx} = -\frac{\mathrm{sen} \,^{n-1} cx}{c(n-m)\cos^{m-1} cx}+\frac{n-1}{n-m}\int\frac{\mathrm{sen} \,^{n-2} cx\;dx}{\cos^m cx} \qquad\mbox{(per }m\neq n\mbox{)}</math>


: anche: <math>\int\frac{\sin^n cx\;dx}{\cos^m cx} = \frac{\sin^{n-1} cx}{c(m-1)\cos^{m-1} cx}-\frac{n-1}{m-1}\int\frac{\sin^{n-1} cx\;dx}{\cos^{m-2} cx} \qquad\mbox{(per }m\neq 1\mbox{)}</math>
: anche: <math>\int\frac{\mathrm{sen} \,^n cx\;dx}{\cos^m cx} = \frac{\mathrm{sen} \,^{n-1} cx}{c(m-1)\cos^{m-1} cx}-\frac{n-1}{m-1}\int\frac{\mathrm{sen} \,^{n-1} cx\;dx}{\cos^{m-2} cx} \qquad\mbox{(per }m\neq 1\mbox{)}</math>


: <math>\int\frac{\cos cx\;dx}{\sin^n cx} = -\frac{1}{c(n-1)\sin^{n-1} cx} \qquad\mbox{(per }n\neq 1\mbox{)}</math>
: <math>\int\frac{\cos cx\;dx}{\mathrm{sen} \,^n cx} = -\frac{1}{c(n-1)\mathrm{sen} \,\mathrm{sen} \,\mathrm{sen} \,^{n-1} cx} \qquad\mbox{(per }n\neq 1\mbox{)}</math>


: <math>\int\frac{\cos^2 cx\;dx}{\sin cx} = \frac{1}{c}\left(\cos cx+\ln\left|\tan\frac{cx}{2}\right|\right)</math>
: <math>\int\frac{\cos^2 cx\;dx}{\mathrm{sen} \, cx} = \frac{1}{c}\left(\cos cx+\ln\left|\tan\frac{cx}{2}\right|\right)</math>




: <math>\int\frac{\cos^2 cx\;dx}{\sin^n cx} = -\frac{1}{n-1}\left(\frac{\cos cx}{c\sin^{n-1} cx)}+\int\frac{dx}{\sin^{n-2} cx}\right) \qquad\mbox{(per }n\neq 1\mbox{)}</math>
: <math>\int\frac{\cos^2 cx\;dx}{\mathrm{sen} \,^n cx} = -\frac{1}{n-1}\left(\frac{\cos cx}{cv^{n-1} cx)}+\int\frac{dx}{\mathrm{sen} \,^{n-2} cx}\right) \qquad\mbox{(per }n\neq 1\mbox{)}</math>




: <math>\int\frac{\cos^n cx\;dx}{\sin^m cx} = -\frac{\cos^{n+1} cx}{c(m-1)\sin^{m-1} cx} - \frac{n-m-2}{m-1}\int\frac{cos^n cx\;dx}{\sin^{m-2} cx} \qquad\mbox{(per }m\neq 1\mbox{)}</math>
: <math>\int\frac{\cos^n cx\;dx}{v^m cx} = -\frac{\cos^{n+1} cx}{c(m-1)\mathrm{sen} \,\mathrm{sen} \,\mathrm{sen} \,^{m-1} cx} - \frac{n-m-2}{m-1}\int\frac{cos^n cx\;dx}{\mathrm{sen} \,^{m-2} cx} \qquad\mbox{(per }m\neq 1\mbox{)}</math>




: anche: <math>\int\frac{\cos^n cx\;dx}{\sin^m cx} = \frac{\cos^{n-1} cx}{c(n-m)\sin^{m-1} cx} + \frac{n-1}{n-m}\int\frac{cos^{n-2} cx\;dx}{\sin^m cx} \qquad\mbox{(per }m\neq n\mbox{)}</math>
: anche: <math>\int\frac{\cos^n cx\;dx}{\mathrm{sen} \,^m cx} = \frac{\cos^{n-1} cx}{c(n-m)\mathrm{sen} \,^{m-1} cx} + \frac{n-1}{n-m}\int\frac{cos^{n-2} cx\;dx}{\mathrm{sen} \,^m cx} \qquad\mbox{(per }m\neq n\mbox{)}</math>




: anche: <math>\int\frac{\cos^n cx\;dx}{\sin^m cx} = -\frac{\cos^{n-1} cx}{c(m-1)\sin^{m-1} cx} - \frac{n-1}{m-1}\int\frac{cos^{n-2} cx\;dx}{\sin^{m-2} cx} \qquad\mbox{(per }m\neq 1\mbox{)}</math>
: anche: <math>\int\frac{\cos^n cx\;dx}{\mathrm{sen} \,\mathrm{sen} \,\mathrm{sen} \,\mathrm{sen} \,\mathrm{sen} \,v\mathrm{sen} \,\mathrm{sen} \,vvvv^m cx} = -\frac{\cos^{n-1} cx}{c(m-1)\mathrm{sen} \,^{m-1} cx} - \frac{n-1}{m-1}\int\frac{cos^{n-2} cx\;dx}{\mathrm{sen} \,^{m-2} cx} \qquad\mbox{(per }m\neq 1\mbox{)}</math>


== Integrali di funzioni trigonometriche contenenti [[Seno (trigonometria)|sin]] e [[Tangente (trigonometria)|tan]] ==
== Integrali di funzioni trigonometriche contenenti seno e tangente ==


: <math>\int \sin cx \tan cx\;dx = \frac{1}{c}(\ln|\sec cx + \tan cx| - \sin cx)</math>
: <math>\int \mathrm{sen} \,\mathrm{sen} \,\mathrm{sen} \, cx \tan cx\;dx = \frac{1}{c}(\ln|\sec cx + \tan cx| - \mathrm{sen} \, cx)</math>


: <math>\int\frac{\tan^n cx\;dx}{\sin^2 cx} = \frac{1}{c(n-1)}\tan^{n-1} (cx) \qquad\mbox{(per }n\neq 1\mbox{)}</math>
: <math>\int\frac{\tan^n cx\;dx}{\mathrm{sen} \,^2 cx} = \frac{1}{c(n-1)}\tan^{n-1} (cx) \qquad\mbox{(per }n\neq 1\mbox{)}</math>


== Integrali di funzioni trigonometriche contenenti [[Coseno|cos]] e [[Tangente (trigonometria)|tan]] ==
== Integrali di funzioni trigonometriche contenenti [[Coseno|cos]] e [[Tangente (trigonometria)|tan]] ==
Riga 185: Riga 189:
== Integrali di funzioni trigonometriche contenenti [[Seno (trigonometria)|sin]] e [[Cotangente|cot]] ==
== Integrali di funzioni trigonometriche contenenti [[Seno (trigonometria)|sin]] e [[Cotangente|cot]] ==


: <math>\int\frac{\cot^n cx\;dx}{\sin^2 cx} = \frac{-1}{c(n+1)}\cot^{n+1} cx \qquad\mbox{(per }n\neq -1\mbox{)}</math>
: <math>\int\frac{\cot^n cx\;dx}{\mathrm{sen} \,^2 cx} = \frac{-1}{c(n+1)}\cot^{n+1} cx \qquad\mbox{(per }n\neq -1\mbox{)}</math>


== Integrali di funzioni trigonometriche contenenti [[Coseno|cos]] e [[Tangente (trigonometria)|cot]] ==
== Integrali di funzioni trigonometriche contenenti [[Coseno|cos]] e [[Tangente (trigonometria)|cot]] ==
Riga 191: Riga 195:
: <math>\int\frac{\cot^n cx\;dx}{\cos^2 cx} = \frac{1}{c(1-n)}\tan^{1-n} cx \qquad\mbox{(per }n\neq 1\mbox{)}</math>
: <math>\int\frac{\cot^n cx\;dx}{\cos^2 cx} = \frac{1}{c(1-n)}\tan^{1-n} cx \qquad\mbox{(per }n\neq 1\mbox{)}</math>


== Integrali di funzioni trigonometriche contenenti [[Tangente (trigonometria)|tan]] e [[Cotangente|cot]] ==
== Integrali di funzioni trigonometriche contenenti tangente e cotangente ==


: <math>\int \frac{\tan^m(cx)}{\cot^n(cx)}\;dx = \frac{1}{c(m+n-1)}\tan^{m+n-1}(cx) - \int \frac{\tan^{m-2}(cx)}{\cot^n(cx)}\;dx\qquad\mbox{(per }m + n \neq 1\mbox{)}</math>
: <math>\int \frac{\tan^m(cx)}{\cot^n(cx)}\;dx = \frac{1}{c(m+n-1)}\tan^{m+n-1}(cx) - \int \frac{\tan^{m-2}(cx)}{\cot^n(cx)}\;dx\qquad\mbox{(per }m + n \neq 1\mbox{)}</math>

Versione delle 19:51, 23 gen 2013

Questa pagina contiene una tavola di integrali indefiniti di funzioni trigonometriche.

Per altri integrali vedi Indici per la matematica#Tavole di integrali.

In questa pagina si assume che c sia una costante diversa da 0.

Integrali di funzioni trigonometriche contenenti solo il seno

Lo stesso argomento in dettaglio: Seno (trigonometria).

Integrali di funzioni trigonometriche contenenti solo il coseno

Lo stesso argomento in dettaglio: Coseno.

Integrali di funzioni trigonometriche contenenti solo tangente

Lo stesso argomento in dettaglio: Tangente (trigonometria).

Integrali di funzioni trigonometriche contenenti solo secante

Lo stesso argomento in dettaglio: Secante (trigonometria).

Integrali di funzioni trigonometriche contenenti solo cosecante

Lo stesso argomento in dettaglio: Cosecante (trigonometria).

Integrali di funzioni trigonometriche contenenti solo cotangente

Lo stesso argomento in dettaglio: Cotangente (trigonometria).

Integrali di funzioni trigonometriche contenenti seno e coseno

anche:
anche:
anche:




anche:


anche:

Integrali di funzioni trigonometriche contenenti seno e tangente

Integrali di funzioni trigonometriche contenenti cos e tan

Integrali di funzioni trigonometriche contenenti sin e cot

Integrali di funzioni trigonometriche contenenti cos e cot

Integrali di funzioni trigonometriche contenenti tangente e cotangente

  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica