Tavola degli integrali indefiniti di funzioni d'arco

Da Wikipedia, l'enciclopedia libera.

Questa pagina contiene una tavola di integrali indefiniti di funzioni d'arco. Per altri integrali vedi Integrale § Tavole di integrali.

In questa pagina si assume che c denoti una costante diversa da 0.

\int\arcsin\frac{x}{c}\,dx = x\arcsin\frac{x}{c} + \sqrt{c^2-x^2}
\int x \arcsin\frac{x}{c}\,dx = \left(\frac{x^2}{2}-\frac{c^2}{4}\right)\arcsin\frac{x}{c} + \frac{x}{4}\sqrt{c^2-x^2}
\int x^2 \arcsin\frac{x}{c}\,dx = \frac{x^3}{3}\arcsin\frac{x}{c} + \frac{x^2+2c^2}{9}\sqrt{c^2-x^2}
\int\arccos\frac{x}{c}\,dx = x\arccos\frac{x}{c} - \sqrt{c^2-x^2}
\int x \arccos\frac{x}{c}\,dx = \left(\frac{x^2}{2}-\frac{c^2}{4}\right)\arccos\frac{x}{c} - \frac{x}{4}\sqrt{c^2-x^2}
\int x^2 \arccos\frac{x}{c}\,dx = \frac{x^3}{3}\arccos\frac{x}{c} - \frac{x^2+2c^2}{9}\sqrt{c^2-x^2}
\int\arctan\frac{x}{c}\,dx = x\arctan\frac{x}{c} - \frac{c}{2}\ln(c^2+x^2)
\int x \arctan\frac{x}{c}\,dx = \frac{c^2+x^2}{2}\arctan\frac{x}{c} - \frac{cx}{2}
\int x^2 \arctan\frac{x}{c}\,dx = \frac{x^3}{3}\arctan\frac{x}{c} - \frac{cx^2}{6} + \frac{c^3}{6}\ln{c^2+x^2}
\int x^n \arctan\frac{x}{c}\,dx = \frac{x^{n+1}}{n+1}\arctan\frac{x}{c} - \frac{c}{n+1}\int\frac{x^{n+1} dx}{c^2+x^2} \qquad\mbox{(per }n\neq 1\mbox{)}
\int \arcsec{\frac{x}{c}}\,dx = x \arcsec{\frac{x}{c}} + \frac{x}{c|x|}\ln{|x \pm \sqrt{x^2 - 1}|}
\int\mathrm{arccot}\,\frac{x}{c}\,dx = x\,\mathrm{arccot}\,\frac{x}{c} + \frac{c}{2}\ln(c^2+x^2)
\int x\,\mathrm{arccot}\,\frac{x}{c}\,dx = \frac{c^2+x^2}{2}\,\mathrm{arccot}\,\frac{x}{c} + \frac{cx}{2}
\int x^2\,\mathrm{arccot}\,\frac{x}{c}\,dx = \frac{x^3}{3}\,\mathrm{arccot}\,\frac{x}{c} + \frac{cx^2}{6} - \frac{c^3}{6}\ln(c^2+x^2)
\int x^n\,\mathrm{arccot}\,\frac{x}{c}\,dx = \frac{x^{n+1}}{n+1}\,\mathrm{arccot}\,\frac{x}{c} + \frac{c}{n+1}\int\frac{x^{n+1} dx}{c^2+x^2} \qquad\mbox{(per }n\neq 1\mbox{)}
matematica Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica