VHF Omnidirectional Range

Da Wikipedia, l'enciclopedia libera.
Se riscontri problemi nella visualizzazione dei caratteri, clicca qui.
Una stazione VORTAC in Germania
La stazione VOR di Vicenza

Il Very High Frequency Omnidirectional Radio Range, più comunemente conosciuto come VOR, è un sistema di radionavigazione per aeromobili; dal 1949 l'ICAO lo ha definito come standard per le navigazioni a corto e medio raggio, sostituendo i radiosentieri a quattro braccia funzionanti in bassa frequenza.

Una stazione di terra VOR, chiamata anche radiofaro, trasmette onde radio in VHF che vengono captate da un ricevitore a bordo che le elabora e fornisce informazioni utili al pilota per capire la sua posizione rispetto al radiofaro.

Il segnale inviato indica sia il nome della stazione (in codice Morse) sia la posizione dell'aereo relativa a quest'ultima in riferimento al Nord magnetico, indicando quindi al pilota il suo rilevamento rispetto alla stazione emittente. Utilizzando il sistema radiale + distanza, si può ottenere la posizione sulla radiale rispetto al VOR del velivolo. Molte stazioni di terra sono anche dotate anche del DME (Distance Measuring Equipment) che misura la distanza tra l'emittente e il ricevitore.

Il VOR divenne il principale sistema di radionavigazione negli anni sessanta: il vantaggio di questo sistema rispetto ai vecchi NDB (Non-Directional Beacon) è che il segnale radio indica anche se si sta viaggiando verso (to) o dalla (from) stazione emittente, permettendo al pilota di seguire più facilmente una linea immaginaria tracciata nel cielo.

Simbolo cartografico ed identificativo di un VOR

La rotte aree tra cui le aerovie, sono disegnate collegando idealmente VOR o altre radioassistenze ad aeroporti.

I VOR forniscono indicazioni molto più accurate e sono più affidabili degli NDB grazie ai componenti con cui sono costruiti, ma queste stesse componenti rendono sia le stazioni di terra sia i ricevitori a bordo più costosi nella manutenzione e nell'installazione. Inoltre possono funzionare entro un raggio massimo che va dai 46 ai 240 chilometri: questo comporta la costruzione di una grande rete di stazioni per coprire le principali rotte aeree.

Come funziona un VOR[modifica | modifica wikitesto]

I VOR operano su radiofrequenze assegnate tra i 108.0 megahertz (MHz) e i 117.95 MHz, che sono compresi nella banda riservata ai segnali VHF, mentre l'ampiezza del canale è di 50 kHz. Furono scelte le frequenze VHF perché viaggiano solo in linea retta e non vengono influenzate dagli agenti atmosferici, permettendo quindi di calcolare molto accuratamente gli angoli. Questo però implica anche che i VOR possono operare solo a distanze inferiori ai 240 km, altrimenti perdono la loro efficacia.

I sistemi VOR utilizzano la relazione di fase tra due segnali di 30 Hz per codificare la direzione. La portante principale è un semplice segnale audio in AM che trasmette l'identificativo della stazione in codice morse. Il secondo segnale di 30 Hz è in FM modulato su una sottoportante di 9960 Hz. Il segnale così miscelato è poi passato a una cortina di quattro antenne omnidirezionali, che ruotano il segnale 30 volte al secondo. Si noti che le antenne non devono necessariamente essere ruotate fisicamente, come avveniva nei primi strumenti di questo tipo, ad oggi i trasmettitori VOR utilizzano due antenne a telaio tra di loro ortogonali, una con un diagramma di radiazione pari a \cos(\alpha), l'altra con diagramma di radiazione pari a \sin(\alpha) , alimentate rispettivamente con il segnale \cos(60\pi t)\cos(2\pi F_c t) e con il segnale \sin(60\pi t)\cos(2\pi F_ct), dove α è l'angolo formato dalla congiungente velivolo stazione e la direzione del nord magnetico, mentre F_c è la frequenza della portante, in modo che l'aeroplano possa ricevere un segnale dipendente dalla sua direzione di volo senza la complicazione di ruotare l'antenna al suolo.

VOR principle.gif

Quando il segnale viene ricevuto dall'aereo, il segnale FM viene decodificato dalla sottoportante e la frequenza viene estratta. I due segnali a 30 Hz vengono poi confrontati per desumere la differenza di fase. La differenza di fase così calcolata corrisponde all'angolo dell'antenna al momento della trasmissione del segnale per mezzo del quale si codifica la direzione della stazione nel momento in cui il fascio più stretto raggiunge il ricevitore.

La differenza di fase viene poi miscelata con una fase costante prodotta localmente. Questo ha l'effetto di cambiare l'angolo. Il risultato viene quindi mandato a un amplificatore, l'uscita del quale pilota i puntatori degli strumenti. Cambiando la fase locale, utilizzando la manopola conosciuta come Omni-Bearing Selector o OBS, il pilota può azzerare l'angolo di una stazione. Per esempio, se il pilota desidera volare a 90 gradi rispetto a una stazione, l'OBS miscela −90 gradi di fase per mezzo dei quali l'ago dell'indicatore segni zero (centrato) quando il velivolo sta volando a 90 gradi rispetto alla stazione.

In molte stazioni VOR è presente un altro aiuto alla navigazione chiamato DME (Distance Measuring Equipment). La combinazione di queste due assistenze viene chiamata VOR-DME o VORTAC, in base all'ente che li gestisce; un VORTAC è un VOR civile collocato insieme ad un TACAN, il sistema di navigazione per aeromobili militari. Il VOR-DME e il TACAN condividono lo stesso DME.

Il DME fornisce ai piloti la distanza "obliqua" dalla stazione di terra, non la distanza al suolo. Questo implica che a basse altitudini o a distanze molto elevate la differenza può essere trascurabile: quindi conoscendo la radiale dalle stazione e la distanza si può tracciare la posizione dell'aereo su una mappa aeronautica.

Alcune stazioni hanno bassa potenza per una navigazione a livello regionale, mentre altri dispongono di una potenza maggiore per la navigazione ad alta quota.

Utilizzo del VOR[modifica | modifica wikitesto]

Ricevitore VOR di bordo

Il tipico strumento del VOR è formato da un disco a bussola (solitamente chiamato compass card) sovrastato da un ago verticale e da un indicatore cosiddetto To/From (a/da). All'esterno del disco c'è una manopola chiamata Omni Bearing Selector (OBS) che ruota il disco. Tutti gli angoli sono riferiti al nord magnetico per permettere un facile confronto tra il VOR e la bussola. Il nord magnetico differisce dal nord reale per una quantità detta declinazione magnetica, la cui variazione dipende dalla posizione sul globo e può essere trovata nelle carte e negli indici aeronautici.

Se il pilota vuole avvicinarsi a una stazione VOR in direzione est dovrà volare in direzione ovest per raggiungerla. Il pilota pertanto adopererà la regolazione OBS per ruotare il disco della bussola finché il disco non recherà il numero 27 (270 gradi) allineato col puntatore in cima al disco. Quando il velivolo intercetterà la radiale a 90 gradi (direzione est della stazione VOR) l'ago sarà centrato e l'indicatore To/From mostrerà "To". Si noti che il pilota imposta il VOR per indicare il reciproco: l'aereo seguirà la radiale dei 90 gradi mentre il VOR indicherà che la rotta per la stazione VOR (indicata con "to") è 270 gradi. Il pilota pertanto dovrà solamente tenere l'ago centrato per seguire la rotta verso la stazione VOR. Se l'ago si sposta fuori centro il pilota vira solidalmente all'ago per ricentrarlo. Dopo aver sorvolato la stazione VOR l'indicatore To/From indicherà "From" e il velivolo si troverà pertanto sulla radiale di 270 gradi. L'ago generalmente oscilla da tutte le parti sorvolando le pertinenze della stazione VOR per poi tornare centrato una volta raggiunta una certa distanza dalla stazione.

Nell'illustrazione qui sopra si noti che il disco della bussola è impostato a 254 gradi, l'ago è centrato e l'indicatore To/From è in posizione "From" (FR). Il VOR sta indicando che il velivolo si trova sulla radiale dei 254 gradi ovest-sudovest dalla stazione VOR. Se l'indicatore To/From avesse indicato "To" il velivolo sarebbe stato sulla radiale dei 74 gradi e la rotta verso la stazione VOR sarebbe stata di 254 gradi. Da notare anche che non esiste alcuna indicazione di quale sia la direzione effettiva del velivolo. L'aereo potrebbe volare in direzione nord e questa foto del dispositivo VOR potrebbe essere stata presa in un momento in cui l'aereo sorvolava la radiale dei 254 gradi. In ogni caso si può asserire che con buona probabilità che l'aereo volasse su una rotta di 254 gradi, che avesse sorvolato la stazione VOR e che ora si stia allontanando dalla stessa.

Seguire una singola rotta con un VOR è molto più semplice che con un NDB. Con un NDB è possibile sapere solamente la direzione verso la stazione ma non la radiale su cui il velivolo si trova. Questo invero potrebbe sembrare la stessa cosa ma la differenza è che per sorvolare un NDB l'indicatore deve essere centrato sullo strumento, l'esatta posizione dell'aereo rispetto alla stazione è sconosciuta. Per trovare la radiale il puntatore NDB deve trovarsi centrato e di conseguenza riferito alla bussola. Inoltre, man mano che il velivolo si avvicina alla stazione NDB, qualunque vento traverso potrebbe causare uno spostamento rispetto alla rotta effettivamente da seguire. Man mano che il pilota centra l'indicatore l'aereo comincia a seguire un percorso curvo verso la stazione NDB e la sorvola da una direzione differente da quella con cui aveva iniziato ad avvicinarla.

La freccia gialla indica se si sta viaggiando verso (To) o dalla (From) stazione emittente

Quando l'aereo sorvola una stazione VOR entra nel cono di confusione, un cono immaginario dove non è possibile identificare correttamente la radiale (e la distanza per il DME). Una volta che l'aereo ha attraversato quest'area, il VOR indicherà la radiale "From" che starà seguendo in quel momento; il pilota continua pertanto a navigare mantenendo il puntatore centrato nello strumento. Con una stazione NDB invece il puntatore si invertirà istantaneamente appena passata la stazione, e per continuare sulla stessa direzione il pilota dovrà invertire la modalità di tutte le correzioni, cosa solitamente molto difficile.

Correggere la posizione con un VOR comunque non è più semplice che con un NDB. In entrambi i casi due stazioni devono essere sintonizzate e le loro direzioni trovate e tracciate su un grafico. Il VOR tuttavia offre una maggiore accuratezza data la natura del suo segnale ma potrebbero essere necessari leggeri aggiustamenti della manopola OBS per trovare la direzione effettiva della stazione.

Navigare lungo linee tra diverse stazioni, sia da che verso, rimane comunque un difficile problema per entrambi i sistemi. In questo caso le radiali cambiano man mano che l'aereo si sposta, e l'unica maniera di fare questa cosa manualmente è di tracciare la rotta e degli aggiustamenti di esempio prima del volo. Errori nella navigazione possono essere veramente difficili da correggere e possono richiedere aggiustamenti che devono essere confrontati con quelli d'esempio tracciati prima del volo.

L'elettronica può risolvere questo problema e il sistema Area Navigation (RNAV) può farlo in maniera molto efficace. Un sistema RNAV è un computer analogico collegato a più ricevitori VOR che può utilizzare i dati del VOR e del DME per calcolare continuamente l'aggiustamento della rotta. I percorsi di volo possono essere selezionati in base alla volontà del pilota e l'elettronica calcolerà continuamente la direzione necessaria per stare entro il percorso, come se il velivolo stesse volando lungo una radiale.

I VOR e le rotte aeree[modifica | modifica wikitesto]

Le stazioni VOR sono usate come intersezioni lungo le aerovie. Una tipica aerovia è costituita da linee rette che collegano fra loro diverse stazioni VOR. Durante un volo, l'aereo viaggia in linea retta e ogni tanto effettua delle virate: queste virate avvengono quando nella rotta viene cambiato il VOR di riferimento.
Altri riferimenti per la navigazione aerea sono costituiti da punti generati dall'intersezione di due radiali provienti da stazioni diverse; non è detto però che queste intersezioni vengano segnalate nelle mappe delle aerovie.

Alcuni velivoli utilizzano due ricevitori di bordo: questo perché oltre a fornire uno strumento di riserva, il pilota può seguire più facilmente una radiale verso una stazione mentre controlla sul secondo apparato quando oltrepassa una certa radiale proveniente da un'altra stazione VOR.

Accuratezza[modifica | modifica wikitesto]

L'accuratezza prevedibile di un VOR è di ±1.4º; comunque i dati indicano che nel 99.94% dei casi l'errore è meno di ±0.35º. Le stazioni hanno dei sistemi di controllo che automaticamente segnalano o rendono inoperativo l'impianto nel caso l'errore sia maggiore di ±1º.

Le stazioni VOR sono in ogni caso dotate di apparecchiature di controllo che automaticamente intervengono a segnalare, ed eventualmente rendere inoperativo, l’impianto che dovesse manifestare uno scostamento dalle tolleranze previste dall’Annesso 10 ICAO.

Ai fini delle procedure di volo, l'accuratezza di un VOR in rotta viene valutata tramite RSS degli errori, che porta ai valori:

  • Providing: ±5.2º in rotta, ±7.8º per il segmento finale o di decollo.
  • Intersecting: ±4.5º.

L'area di protezione associata ad una radiale, utilizzata per i segmenti finali o di mancato avvicinamento, o per una partenza, è di 1 NM da entrambi i lati, con un margine ben definito di 7.8º.

Il futuro[modifica | modifica wikitesto]

Come altri sistemi di radio-navigazione, è probabile che in futuro i VOR verranno sostituiti da altri metodi di navigazione basati su sistemi satellitari come il GPS. Una delle cause fondamentali è che il sistema VOR ha bisogno di molte stazioni di terra per coprire una grande area, con conseguenti costi di installazione e manutenzione.


Altri progetti[modifica | modifica wikitesto]

Aviazione Portale Aviazione: accedi alle voci di Wikipedia che trattano di Aviazione