5G: differenze tra le versioni

Da Wikipedia, l'enciclopedia libera.
Vai alla navigazione Vai alla ricerca
Contenuto cancellato Contenuto aggiunto
m apostrofo tipografico
Nessun oggetto della modifica
Riga 33: Riga 33:


Se il 5G appare e riflette queste prognosi, allora la principale differenza, da un punto di vista dell'utente, tra il 4G e il 5G deve essere qualcosa di diverso dalla maggiore velocità (aumentata velocità di trasmissione di picco). Ad esempio, un più elevato numero di dispositivi connessi simultaneamente, una più elevata [[Efficienza spettrale|efficienza spettrale di sistema]] (volume di dati per unità di area), un più basso consumo delle batterie, una più bassa probabilità di interruzione (migliore copertura), alte velocità di trasmissione in porzioni più grandi dell'area di copertura, latenze inferiori, un più elevato numero di dispositivi supportati, costi più bassi per l'installazione delle infrastrutture, una più elevata versatilità e scalabilità, o una più elevata affidabilità delle comunicazioni. Questi sono gli obiettivi in parecchi dei documenti e progetti di ricerca che seguono.
Se il 5G appare e riflette queste prognosi, allora la principale differenza, da un punto di vista dell'utente, tra il 4G e il 5G deve essere qualcosa di diverso dalla maggiore velocità (aumentata velocità di trasmissione di picco). Ad esempio, un più elevato numero di dispositivi connessi simultaneamente, una più elevata [[Efficienza spettrale|efficienza spettrale di sistema]] (volume di dati per unità di area), un più basso consumo delle batterie, una più bassa probabilità di interruzione (migliore copertura), alte velocità di trasmissione in porzioni più grandi dell'area di copertura, latenze inferiori, un più elevato numero di dispositivi supportati, costi più bassi per l'installazione delle infrastrutture, una più elevata versatilità e scalabilità, o una più elevata affidabilità delle comunicazioni. Questi sono gli obiettivi in parecchi dei documenti e progetti di ricerca che seguono.
<!--
GSMHistory.com<ref>{{cite web |url= http://www.gsmhistory.com/5g/ |title=what is 5g, 5g visions, |work=GSM History: History of GSM, Mobile Networks, Vintage Mobiles |agency=GSMHistory.com}}</ref> has recorded three very distinct 5G network visions that had emerged by 2014:


GSMHistory.com<ref>{{cita web |url= http://www.gsmhistory.com/5g/ |titolo=what is 5g, 5g visions, |sito=GSM History: History of GSM, Mobile Networks, Vintage Mobiles |editore=GSMHistory.com}}</ref> ha registrato tre visioni molto distinte delle reti 5G che erano emerse verso il 2014:
* '''A super-efficient mobile network''' that delivers a better performing network for lower investment cost. It addresses the mobile network operators' pressing need to see the unit cost of data transport falling at roughly the same rate as the volume of data demand is rising. It would be a leap forward in efficiency based on the IET Demand Attentive Network (DAN) philosophy.<ref>{{cite web|url=http://www.theiet.org/factfiles/comms/dan-page.cfm?origin=/dan |title=Demand Attentive Networks (DAN) |publisher=}}</ref>
* '''A super-fast mobile network''' comprising the next generation of [[small cell]]s densely clustered to give a contiguous coverage over at least urban areas and getting the world to the final frontier of true “wide-area mobility." It would require access to spectrum under 4&nbsp;GHz perhaps via the world's first global implementation of [[Dynamic spectrum management|Dynamic Spectrum Access]].
* '''A converged fiber-wireless network''' that uses, for the first time for wireless Internet access, the [[millimeter wave]] bands (20 – 60&nbsp;GHz) so as to allow very-wide-bandwidth radio channels able to support data-access speeds of up to 10 Gbit/s. The connection essentially comprises “short” wireless links on the end of local [[fiber optic cable]]. It would be more a “nomadic” service (like Wi-Fi) rather than a wide-area “mobile” service.


* '''Una rete mobile super efficiente''' che fornisce una rete con prestazioni migliori a un costo d'investimento inferiore. Si rivolge al bisogno pressante degli operatori di rete mobile per vedere il costo unitario del trasporto dati calare grosso modo alla stessa velocità alla quale sta salendo il volume della domanda di dati. Sarebbe un balzo in avanti in efficienza basato sulla filosofia delle “reti attente alla domanda” (''Demand Attentive Network'', DAN) della IET (Institution of Engineering and Technology).<ref>{{cita web|url=http://www.theiet.org/factfiles/comms/dan-page.cfm?origin=/dan |titolo=Demand Attentive Networks (DAN)}}</ref>
In its white paper, ''5G Empowering Vertical Industries'', 5G PPP, the collaborative research programme organized as part of the [[European Commission]]’s [[Framework Programmes for Research and Technological Development#Horizon 2020|Horizon 2020]] programme, suggests that to support the main vertical sectors in Europe - namely automotive, transportation, healthcare, energy, manufacturing, and media and entertainmeqnt - the most important 5G infrastructure performance requirements are a latency below 5 ms, support for device densities of up to 100 devices/m<sup>2</sup> and reliable coverage area, and that a successful 5G deployment will integrate telecommunication technologies including mobile, fixed, optical and satellite (both [[Geostationary orbit|GEO]] and [[Medium Earth orbit|MEO]]).<ref>[https://5g-ppp.eu/wp-content/uploads/2016/02/BROCHURE_5PPP_BAT2_PL.pdf ''5G Empowering Vertical Industries''] (White Paper). 5G PPP. February 2016. Retrieved March 1, 2016</ref>
* '''Una rete mobile super veloce''' comprendente la prossima generazione di [[Piccola cella|piccole celle]] densamente raggruppate per dare una copertura continua almeno sulle aree urbane e portante il mondo alla frontiera finale della vera “mobilità su ampia area”. Richiederebbe accesso allo spettro sotto i 4&nbsp;GHz forse attraverso la prima implementazione globale al mondo dell'[[Dynamic Spectrum Management|accesso dinamico allo spettro]] (''Dynamic Spectrum Access'').
* '''Una rete senza fili in fibra concentrata''' che usa, per la prima volta per l'accesso senza fili a Internet, le bande delle [[Onda millimetrica|onde millimetriche]] (20 – 60&nbsp;GHz) così da permettere canali radio con ampiezza di banda molto larga capaci di supportare velocità di accesso ai dati fino a 10 Gbit/s. La,p connessione comprende essenzialmente collegamenti senza fili “corti” all'estremità del cavo in fibra ottica locale. Sarebbe più un servizio “nomade” (come il Wi-Fi) piuttosto che un servizio “mobile” su ampia area.


Nel suo libro bianco, ''5G Empowering Vertical Industries'' (“Il 5G autorizza le industrie verticali”), il 5G PPP, il programma collaborativo di ricerca organizzato come parte del programma della [[Commissione europea]] Horizon 2020, suggerisce che per supportare i principali settori verticali in Europa - cioè automobili, trasporti, assistenza sanitaria, energia, manifattura e media e intrattenimento - i più importanti requisiti prestazionali dell'infrastruttura 5G sono una latenza sotto 5 ms, supporto per densità di dispositivi fino a 100 dispositivi/m<sup>2</sup> e un'area di copertura affidabile, e che un'installazione riuscita del 5G integrerà le tecnologie di telecomunicazione inclusa quella mobile, fissa, ottica e satellitare (sia [[Orbita geostazionaria|GEO]] che [[Orbita terrestre media|MEO]]).<ref>{{cita web |url=https://5g-ppp.eu/wp-content/uploads/2016/02/BROCHURE_5PPP_BAT2_PL.pdf |titolo=5G Empowering Vertical Industries White Paper). sito=5G PPP |data=febbraio 2016 |accesso=1º marzo 2016}}</ref>
<!--
== Research & development projects ==
== Research & development projects ==
In 2008, the South Korean IT R&D program of "5G mobile communication systems based on beam-division multiple access and relays with group cooperation" was formed.<ref name="multi-hop nets Korea 2008 1"/>
In 2008, the South Korean IT R&D program of "5G mobile communication systems based on beam-division multiple access and relays with group cooperation" was formed.<ref name="multi-hop nets Korea 2008 1"/>
Riga 49: Riga 49:
In 2012, [[NYU WIRELESS]] was established as a multidisciplinary research center, with a focus on 5G wireless research, as well as its use in the medical and computer-science fields. The center is funded by the National Science Foundation and a board of 10 major wireless companies (as of July 2014) that serve on the Industrial Affiliates board of the center. NYU WIRELESS has conducted and published channel measurements that show that millimeter wave frequencies will be viable for multigigabit-per-second data rates for future 5G networks.
In 2012, [[NYU WIRELESS]] was established as a multidisciplinary research center, with a focus on 5G wireless research, as well as its use in the medical and computer-science fields. The center is funded by the National Science Foundation and a board of 10 major wireless companies (as of July 2014) that serve on the Industrial Affiliates board of the center. NYU WIRELESS has conducted and published channel measurements that show that millimeter wave frequencies will be viable for multigigabit-per-second data rates for future 5G networks.


In 2012, the European Commission, under the lead of Neelie Kroes, committed 50 million euros for research to deliver 5G mobile technology by 2020.<ref name="Europa.eu €50m 5G R+D 1">{{cite web |url=http://europa.eu/rapid/press-release_IP-13-159_en.htm |title=Mobile communications: Fresh €50 million EU research grants in 2013 to develop '5G' technology|publisher=[[Europa.eu]] |date=26 February 2013 |accessdate=27 September 2013}}</ref> In particular, The METIS 2020 Project is driven by several telecommunication companies, and aims at reaching world-wide consensus on the future global mobile and wireless communication system. The METIS overall technical goal is to provide a system concept that supports 1,000 times higher mobile [[system spectral efficiency]], compared to current LTE deployments.<ref name="METIS 2020s 5G"/> In addition, in 2013, another project has started, called 5GrEEn,<ref name="EIT ICT Labs 5GrEEn plans 1">{{cite web |url= http://www.eitictlabs.eu/innovation-areas/networking-solutions-for-future-media/5green-towards-green-5g-mobile-networks |title=5GrEEn project webpage - Towards Green 5G Mobile Networks |publisher=[[EIT ICT Labs]] |date=15 January 2013|accessdate=27 September 2013}}</ref> linked to project METIS and focusing on the design of green 5G mobile networks. Here the goal is to develop guidelines for the definition of a new-generation network with particular emphasis on energy efficiency, sustainability and affordability.
In 2012, the [[Barroso Commission|European Commission]], under the lead of [[Neelie Kroes]], committed 50 million euros for research to deliver 5G mobile technology by 2020.<ref name="Europa.eu €50m 5G R+D 1">{{cite web |url=http://europa.eu/rapid/press-release_IP-13-159_en.htm |title=Mobile communications: Fresh €50 million EU research grants in 2013 to develop '5G' technology|publisher=[[Europa.eu]] |date=26 February 2013 |accessdate=27 September 2013}}</ref> In particular, The METIS 2020 Project is driven by several telecommunication companies, and aims at reaching world-wide consensus on the future global mobile and wireless communication system. The METIS overall technical goal is to provide a system concept that supports 1,000 times higher mobile [[system spectral efficiency]], compared to current LTE deployments.<ref name="METIS 2020s 5G"/> In addition, in 2013, another project has started, called 5GrEEn,<ref name="EIT ICT Labs 5GrEEn plans 1">{{cite web |url= http://www.eitictlabs.eu/innovation-areas/networking-solutions-for-future-media/5green-towards-green-5g-mobile-networks |title=5GrEEn project webpage - Towards Green 5G Mobile Networks |publisher=[[EIT ICT Labs]] |date=15 January 2013|accessdate=27 September 2013}}</ref> linked to project METIS and focusing on the design of green 5G mobile networks. Here the goal is to develop guidelines for the definition of a new-generation network with particular emphasis on energy efficiency, sustainability and affordability.


In November 2012, a research project funded by the [[European Union]] under the ICT Programme [[Framework Programmes for Research and Technological Development#Framework Programme 7|FP7]] was launched under the coordination of [[IMDEA Networks Institute]] (Madrid, Spain): {{nowrap|i-JOIN}} (Interworking and JOINt Design of an Open Access and Backhaul Network Architecture for Small Cells based on Cloud Networks). iJOIN introduces the novel concept of the radio access network (RAN) as a service (RANaaS), where [[Radio access network|RAN]] functionality is flexibly centralized through an open IT platform based on a cloud infrastructure. iJOIN aims for a joint design and optimization of access and backhaul, operation and management algorithms, and architectural elements, integrating small cells, heterogeneous backhaul and centralized processing. Additionally to the development of technology candidates across [[PHY]], [[media access control|MAC]], and the [[network layer]], iJOIN will study the requirements, constraints and implications for existing mobile networks, specifically [[3GPP]] [[LTE-A]].
In November 2012, a research project funded by the [[European Union]] under the ICT Programme [[Framework Programmes for Research and Technological Development#Framework Programme 7|FP7]] was launched under the coordination of [[IMDEA Networks Institute]] (Madrid, Spain): {{nowrap|i-JOIN}} (Interworking and JOINt Design of an Open Access and Backhaul Network Architecture for Small Cells based on Cloud Networks). iJOIN introduces the novel concept of the radio access network (RAN) as a service (RANaaS), where [[Radio access network|RAN]] functionality is flexibly centralized through an open IT platform based on a cloud infrastructure. iJOIN aims for a joint design and optimization of access and backhaul, operation and management algorithms, and architectural elements, integrating small cells, heterogeneous backhaul and centralized processing. Additionally to the development of technology candidates across [[PHY]], [[media access control|MAC]], and the [[network layer]], iJOIN will study the requirements, constraints and implications for existing mobile networks, specifically [[3GPP]] [[LTE-A]].
Riga 57: Riga 57:
In September 2013, the Cyber-Physical System (CPS) Lab at Rutgers University, NJ, started to work on dynamic provisioning and allocation under the emerging cloud radio-access network (C-RAN). They have shown that the dynamic demand-aware provisioning in the cloud will decrease the energy consumption while increasing the resource utilization.<ref>{{cite journal |last1=Pompili |first1=Dario |last2=Hajisami |first2=Abolfazl |last3=Viswanathan |first3=Hariharasudhan |title=Dynamic Provisioning and Allocation in Cloud Radio Access Networks (C-RANs) |journal=Ad Hoc Networks |date=March 2015 |volume=30 |pages=128–143 |url=http://www.sciencedirect.com/science/article/pii/S1570870515000438}}</ref> They also have implemented a test bed for feasibility of C-RAN and developed new cloud-based techniques for interference cancellation. Their project is funded by the National Science Foundation.
In September 2013, the Cyber-Physical System (CPS) Lab at Rutgers University, NJ, started to work on dynamic provisioning and allocation under the emerging cloud radio-access network (C-RAN). They have shown that the dynamic demand-aware provisioning in the cloud will decrease the energy consumption while increasing the resource utilization.<ref>{{cite journal |last1=Pompili |first1=Dario |last2=Hajisami |first2=Abolfazl |last3=Viswanathan |first3=Hariharasudhan |title=Dynamic Provisioning and Allocation in Cloud Radio Access Networks (C-RANs) |journal=Ad Hoc Networks |date=March 2015 |volume=30 |pages=128–143 |url=http://www.sciencedirect.com/science/article/pii/S1570870515000438}}</ref> They also have implemented a test bed for feasibility of C-RAN and developed new cloud-based techniques for interference cancellation. Their project is funded by the National Science Foundation.


In November 2013, Chinese telecom equipment vendor Huawei said it will invest $600 million in research for 5G technologies in the next five years.<ref>{{cite web |url= http://pr.huawei.com/en/news/hw-314871-5g.htm |title=Huawei to Invest $600M in 5G Research & Innovation by 2018 - Huawei Press Center |publisher=Huawei |date= |accessdate=2016-01-14}}</ref> The company's 5G research initiative does not include investment to productize 5G technologies for global telecom operators. Huawei will be testing 5G technology in [[Malta]].<ref>{{cite web |author=Allied Newspapers Ltd |url= http://www.timesofmalta.com/articles/view/20150714/local/updated-agreement-for-5g-technology-testing-signed.576618# |title=Update 2: Agreement for 5G technology testing signed; 'You finally found me' - Sai Mizzi Liang |publisher=timesofmalta.com |date= |accessdate=2016-01-14}}</ref><ref>{{cite web |author=Allied Newspapers Ltd |url= http://www.timesofmalta.com/articles/view/20150712/local/pm-thanks-sai-mizzi-as-chinese-telecoms-giant-prepares-to-test-5g-in.576179 |title=PM thanks Sai Mizzi as Chinese telecoms giant prepares to test 5G in Malta |publisher=timesofmalta.com |date= |accessdate=2016-01-14}}</ref>
In November 2013, Chinese telecom equipment vendor Huawei said it will invest $600 million in research for 5G technologies in the next five years.<ref>{{cite web |url= http://pr.huawei.com/en/news/hw-314871-5g.htm |title=Huawei to Invest $600M in 5G Research & Innovation by 2018 - Huawei Press Center |publisher=Huawei |date= |accessdate=2016-01-14}}</ref> The company’s 5G research initiative does not include investment to productize 5G technologies for global telecom operators. Huawei will be testing 5G technology in [[Malta]].<ref>{{cite web |author=Allied Newspapers Ltd |url= http://www.timesofmalta.com/articles/view/20150714/local/updated-agreement-for-5g-technology-testing-signed.576618# |title=Update 2: Agreement for 5G technology testing signed; 'You finally found me' - Sai Mizzi Liang |publisher=timesofmalta.com |date= |accessdate=2016-01-14}}</ref><ref>{{cite web |author=Allied Newspapers Ltd |url= http://www.timesofmalta.com/articles/view/20150712/local/pm-thanks-sai-mizzi-as-chinese-telecoms-giant-prepares-to-test-5g-in.576179 |title=PM thanks Sai Mizzi as Chinese telecoms giant prepares to test 5G in Malta |publisher=timesofmalta.com |date= |accessdate=2016-01-14}}</ref>


In 2015, Huawei and Ericsson are testing 5G-related technologies in rural areas in northern Netherlands.<ref>{{cite journal |title=Noord-Groningen krijgt onvoorstelbaar snel mobiel internet |journal=RTV Noordx |date=August 2015 |url=http://rtvnoord.nl/artikel/artikel.asp?p=152709}}</ref>
In 2015, Huawei and Ericsson are testing 5G-related technologies in rural areas in northern Netherlands.<ref>{{cite journal |title=Noord-Groningen krijgt onvoorstelbaar snel mobiel internet |journal=RTV Noordx |date=August 2015 |url=http://rtvnoord.nl/artikel/artikel.asp?p=152709}}</ref>


In July 2015, the 5GNORMA project was launched. The key objective of 5G NORMA is to develop a conceptually novel, adaptive and future-proof 5G mobile network architecture. The architecture is enabling unprecedented levels of network customisability, ensuring stringent performance, security, cost and energy requirements to be met; as well as providing an API-driven architectural openness, fuelling economic growth through over-the-top innovation. With 5G NORMA, leading players in the mobile ecosystem aim to underpin Europe's leadership position in 5G.<ref>{{cite journal |title=5GNORMA website |url= https://5gnorma.5g-ppp.eu/}}</ref>
In July 2015, the 5GNORMA project was launched. The key objective of 5G NORMA is to develop a conceptually novel, adaptive and future-proof 5G mobile network architecture. The architecture is enabling unprecedented levels of network customisability, ensuring stringent performance, security, cost and energy requirements to be met; as well as providing an API-driven architectural openness, fuelling economic growth through over-the-top innovation. With 5G NORMA, leading players in the mobile ecosystem aim to underpin Europe’s leadership position in 5G.<ref>{{cite journal |title=5GNORMA website |url= https://5gnorma.5g-ppp.eu/}}</ref>


In July 2015, the European research project mmMAGIC was launched. The mmMAGIC project will develop new concepts for mobile radio access technology (RAT) for mmwave band deployment. This is a key component in the 5G multi-RAT ecosystem and will be used as a foundation for global standardization. The project will enable ultrafast mobile broadband services for mobile users, supporting UHD/3D streaming, immersive applications and ultra-responsive cloud services. A new radio interface, including novel network management functions and architecture components will be designed taking as guidance 5G PPP's KPI and exploiting the use of novel adaptive and cooperative beam-forming and tracking techniques to address the specific challenges of mm-wave mobile propagation. The ambition of the project is to pave the way for a European head start in 5G standards and to strengthen European competitiveness. The consortium brings together major infrastructure vendors, major European operators, leading research institutes and universities, measurement equipment vendors and one SME.
In July 2015, the European research project mmMAGIC was launched. The mmMAGIC project will develop new concepts for mobile radio access technology (RAT) for mmwave band deployment. This is a key component in the 5G multi-RAT ecosystem and will be used as a foundation for global standardization. The project will enable ultrafast mobile broadband services for mobile users, supporting UHD/3D streaming, immersive applications and ultra-responsive cloud services. A new radio interface, including novel network management functions and architecture components will be designed taking as guidance 5G PPP’s KPI and exploiting the use of novel adaptive and cooperative beam-forming and tracking techniques to address the specific challenges of mm-wave mobile propagation. The ambition of the project is to pave the way for a European head start in 5G standards and to strengthen European competitiveness. The consortium brings together major infrastructure vendors, major European operators, leading research institutes and universities, measurement equipment vendors and one SME.
<ref>{{cite journal|title=mmMAGIC website|url=https://5g-ppp.eu/mmmagic/}}</ref>
<ref>{{cite journal|title=mmMAGIC website|url=https://5g-ppp.eu/mmmagic/}}</ref>


Riga 70: Riga 70:


In July 2015, the European 5G research project Flex5Gware was launched. The objective of Flex5Gware is to deliver highly reconfigurable hardware (HW) platforms together with HW-agnostic software (SW) platforms targeting both network elements and devices and taking into account increased capacity, reduced energy footprint, as well as scalability and modularity, to enable a smooth transition from 4G mobile wireless systems to 5G. This will enable that 5G HW/SW platforms can meet the requirements imposed by the anticipated exponential growth in mobile data traffic (1000 fold increase) together with the large diversity of applications (from low bit-rate/power power for M2M to interactive and high resolution applications).<ref>{{cite journal|title=Flex5Gware website|url=https://5g-ppp.eu/flex5gware/}}</ref>
In July 2015, the European 5G research project Flex5Gware was launched. The objective of Flex5Gware is to deliver highly reconfigurable hardware (HW) platforms together with HW-agnostic software (SW) platforms targeting both network elements and devices and taking into account increased capacity, reduced energy footprint, as well as scalability and modularity, to enable a smooth transition from 4G mobile wireless systems to 5G. This will enable that 5G HW/SW platforms can meet the requirements imposed by the anticipated exponential growth in mobile data traffic (1000 fold increase) together with the large diversity of applications (from low bit-rate/power power for M2M to interactive and high resolution applications).<ref>{{cite journal|title=Flex5Gware website|url=https://5g-ppp.eu/flex5gware/}}</ref>

In July 2015, the SUPERFLUIDITY project, part of the European H2020 Public-Private Partnership (5G PPP) and led by CNIT, an Italian inter-university consortium, was started. The SUPERFLUIDITY consortium comprises [[Telephone Company|telcos]] and IT players for a total of 18 partners. In physics, [[superfluidity]] is a state in which matter behaves like a fluid with zero viscosity. The SUPERFLUIDITY project aims at achieving superfluidity in the Internet: the ability to instantiate services on-the-fly, run them anywhere in the network (core, aggregation, edge) and shift them transparently to different locations. The project tackles crucial shortcomings in today’s networks: long provisioning times, with wasteful over-provisioning used to meet variable demand; reliance on rigid and cost-ineffective hardware devices; daunting complexity emerging from three forms of heterogeneity: heterogeneous traffic and sources; heterogeneous services and needs; and heterogeneous access technologies, with multi-vendor network components. SUPERFLUIDITY will provide a converged cloud-based 5G concept that will enable innovative use cases in the mobile edge, empower new business models, and reduce investment and operational costs.
<ref>{{cite journal|title=SUPERFLUIDITY website|url=https://5g-ppp.eu/superfluidity/}}</ref>


On January 29, 2016, Google revealed that they are developing a 5G network called [[SkyBender]]. They planned to distribute this connection through sun-powered drones.<ref>{{cite news|last1=Harris|first1=Mark|title=Project Skybender: Google's secretive 5G internet drone tests revealed|url=http://www.theguardian.com/technology/2016/jan/29/project-skybender-google-drone-tests-internet-spaceport-virgin-galactic|accessdate=31 January 2016|agency=The Guardian|date=29 January 2016}}</ref>
On January 29, 2016, Google revealed that they are developing a 5G network called [[SkyBender]]. They planned to distribute this connection through sun-powered drones.<ref>{{cite news|last1=Harris|first1=Mark|title=Project Skybender: Google's secretive 5G internet drone tests revealed|url=http://www.theguardian.com/technology/2016/jan/29/project-skybender-google-drone-tests-internet-spaceport-virgin-galactic|accessdate=31 January 2016|agency=The Guardian|date=29 January 2016}}</ref>
Riga 79: Riga 82:
*Radio propagation measurements and channel models for millimeter-wave wireless communication in both outdoor and indoor scenarioes in the 28, 38, 60 and 72–73&nbsp;GHz bands have been published in 2014.<ref>T. S. Rappaport, et. al., "Wideband Millimeter-Wave Propagation Measurements and Channel Models for Future Wireless Communication System Design," IEEE Trans. Comm., Vol. 63, No. 9, Sept. 2015, pp. 3029-3056.</ref><ref>G. MacCartney, et. al., "Indoor Office Wideband Millimeter-Wave Propagation Measurements and Channel Models at 28 and 73 GHz for Ultra-Dense 5G Wireless Networks," IEEE Access, Vol. 3, 2388-2424, October 2015.</ref>
*Radio propagation measurements and channel models for millimeter-wave wireless communication in both outdoor and indoor scenarioes in the 28, 38, 60 and 72–73&nbsp;GHz bands have been published in 2014.<ref>T. S. Rappaport, et. al., "Wideband Millimeter-Wave Propagation Measurements and Channel Models for Future Wireless Communication System Design," IEEE Trans. Comm., Vol. 63, No. 9, Sept. 2015, pp. 3029-3056.</ref><ref>G. MacCartney, et. al., "Indoor Office Wideband Millimeter-Wave Propagation Measurements and Channel Models at 28 and 73 GHz for Ultra-Dense 5G Wireless Networks," IEEE Access, Vol. 3, 2388-2424, October 2015.</ref>
*Massive Dense Networks also known as Massive Distributed [[MIMO]] providing green flexible small cells 5G Green Dense Small Cells. This is a transmission point equipped with a very large number of antennas that simultaneously serve multiple users. With massive MIMO multiple messages for several terminals can be transmitted on the same time-frequency resource, maximizing beamforming gain while minimizing interference.<ref>B. Kouassi, I. Ghauri, L. Deneire, Reciprocity-based cognitive transmissions using a MU massive MIMO approach. IEEE International Conference on Communications (ICC), 2013 [http://hal.archives-ouvertes.fr/hal-00845407/]</ref><ref name="MDN/MDM Marzetta 1">{{cite web |url= http://dx.doi.org/10.1109/TWC.2010.092810.091092 |title=Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas |publisher=Bell Labs., Alcatel-Lucent |work=IEEE Transactions on Wireless Communications, vol. 9, no. 11 |pages=56–61, 3590–3600 |author=T. L. Marzetta |issn=1536-1276 |date=November 2010 |accessdate=27 September 2013}}</ref><ref name="MDN/MDM Hoydis 1">{{cite web |url= http://dx.doi.org/10.1109/JSAC.2013.130205|title=Massive MIMO in the UL/DL of Cellular Networks: How Many Antennas Do We Need?|publisher=Bell Labs., Alcatel-Lucent |work=IEEE Journal on Selected Areas in Communications, vol. 31, no. 2 |pages=160–171 |author1=J. Hoydis |author2=S. ten Brink |author3=M. Debbah |date=February 2013 |accessdate=27 September 2013}}</ref><ref name="Scaling Up MIMO: Opportunities and Challenges with Very Large Arrays">{{cite web |url= https://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6375940 |title=Scaling Up MIMO: Opportunities and Challenges with Very Large Arrays|author=Rusek, F.; Persson, D.; Buon Kiong Lau; Larsson, E.G.; Marzetta, T.L.; Edfors, O.; Tufvesson, F |work=Signal Processing Magazine, IEEE, vol.30, no.1, pp.40,60 |accessdate=Jan 2013}}</ref>
*Massive [[MIMO]]: This is a transmission point equipped with a very large number of antennas that simultaneously serve multiple users. With massive MIMO multiple messages for several terminals can be transmitted on the same time-frequency resource, maximizing beamforming gain while minimizing interference.<ref name="MDN/MDM Marzetta 1">{{cite web |url= http://dx.doi.org/10.1109/TWC.2010.092810.091092 |title=Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas |publisher=Bell Labs., Alcatel-Lucent |work=IEEE Transactions on Wireless Communications, vol. 9, no. 11 |pages=56–61, 3590–3600 |author=T. L. Marzetta |issn=1536-1276 |date=November 2010 |accessdate=27 September 2013}}</ref><ref name="MDN/MDM Hoydis 1">{{cite web |url= http://dx.doi.org/10.1109/JSAC.2013.130205|title=Massive MIMO in the UL/DL of Cellular Networks: How Many Antennas Do We Need?|publisher=Bell Labs., Alcatel-Lucent |work=IEEE Journal on Selected Areas in Communications, vol. 31, no. 2 |pages=160–171 |author1=J. Hoydis |author2=S. ten Brink |author3=M. Debbah |date=February 2013 |accessdate=27 September 2013}}</ref><ref name="MM Bjornson 1">{{cite web |url= http://dx.doi.org/10.1109/TWC.2015.2488634|title=Massive MIMO for Maximal Spectral Efficiency: How Many Users and Pilots Should Be Allocated?|publisher=IEEE |work=IEEE Transactions on Wireless Communications, vol. 15, no. 2|pages=1293-1308 |author1=E. Bjornson |author2=E. G. Larsson |author3=M. Debbah |date=February 2016 |accessdate=2 March 2016}}</ref><ref name="MM Bjornson 2">{{cite web |url= http://dx.doi.org/10.1109/TWC.2015.2400437|title=Optimal Design of Energy-Efficient Multi-User MIMO Systems: Is Massive MIMO the Answer?|publisher=IEEE |work=IEEE Transactions on Wireless Communications, vol. 14, no. 6|pages=3059-3075 |author1=E. Bjornson |author2=L. Sanguinetti |author3=J. Hoydis |author4=M. Debbah |date=June 2015 |accessdate=2 March 2016}}</ref><ref name="Scaling Up MIMO: Opportunities and Challenges with Very Large Arrays">{{cite web |url= https://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6375940 |title=Scaling Up MIMO: Opportunities and Challenges with Very Large Arrays|author=Rusek, F.; Persson, D.; Buon Kiong Lau; Larsson, E.G.; Marzetta, T.L.; Edfors, O.; Tufvesson, F |work=Signal Processing Magazine, IEEE, vol.30, no.1, pp.40,60 |accessdate=Jan 2013}}</ref><ref>B. Kouassi, I. Ghauri, L. Deneire, Reciprocity-based cognitive transmissions using a MU massive MIMO approach. IEEE International Conference on Communications (ICC), 2013 [http://hal.archives-ouvertes.fr/hal-00845407/]</ref>
*Proactive content caching at the edge: While network densification (i.e., adding more cells) is one way to achieve higher capacity and coverage, it becomes evident that the cost of this operation might not be sustainable as the dense deployment of base stations also requires high-speed expensive backhauls. In this regard, assuming that the backhaul is capacity-limited, caching users' contents at the edge of the network (namely at the base stations and user terminals) holds as a solution to offload the backhaul and reduce the access delays to the contents.<ref name="BastugLivingOnTheEdge">{{cite web |url= http://dx.doi.org/10.1109/MCOM.2014.6871674 |title=Living on the edge: The role of proactive caching in 5G wireless networks |publisher=IEEE |work=IEEE Communications Magazine, vol. 52, issue. 8 |pages=82–89|author1=E. Bastug |author2=M. Bennis|author3=M. Debbah |date=August 2014 |accessdate=8 November 2015}}</ref><ref name="BastugCacheEanbled">{{cite web |url= http://www.jwcn.eurasipjournals.com/content/2015/1/41 |title=Cache-enabled small cell networks: modeling and tradeoffs |publisher=Springer |work=EURASIP Journal on Wireless Communications and Networking, vol. 2015, no. 1 pp. 41 |author1=E. Bastug |author2=M. Bennis |author3=M. Kountouris |author4=M. Debbah |date=August 2014 |accessdate=8 November 2015}}</ref> In any case, caching contents at the edge aim to solve the problem of reducing the end-to-end delay, which is one of the requirements of 5G. The upcoming special issue of IEEE Communications Magazine aims to argue massive content delivery techniques in cache-enabled 5G wireless networks.<ref>{{cite web |url= http://www.comsoc.org/commag/cfp/communications-caching-and-computing-content-centric-mobile-networks |title=Communications, Caching, and Computing for Content-Centric Mobile Networks &#124; IEEE Communications Society |publisher=Comsoc.org |date=2016-01-01 |accessdate=2016-01-14}}</ref>
*Proactive content caching at the edge: While network densification (i.e., adding more cells) is one way to achieve higher capacity and coverage, it becomes evident that the cost of this operation might not be sustainable as the dense deployment of base stations also requires high-speed expensive backhauls. In this regard, assuming that the backhaul is capacity-limited, caching users' contents at the edge of the network (namely at the base stations and user terminals) holds as a solution to offload the backhaul and reduce the access delays to the contents.<ref name="BastugLivingOnTheEdge">{{cite web |url= http://dx.doi.org/10.1109/MCOM.2014.6871674 |title=Living on the edge: The role of proactive caching in 5G wireless networks |publisher=IEEE |work=IEEE Communications Magazine, vol. 52, issue. 8 |pages=82–89|author1=E. Bastug |author2=M. Bennis|author3=M. Debbah |date=August 2014 |accessdate=8 November 2015}}</ref><ref name="BastugCacheEanbled">{{cite web |url= http://www.jwcn.eurasipjournals.com/content/2015/1/41 |title=Cache-enabled small cell networks: modeling and tradeoffs |publisher=Springer |work=EURASIP Journal on Wireless Communications and Networking, vol. 2015, no. 1 pp. 41 |author1=E. Bastug |author2=M. Bennis |author3=M. Kountouris |author4=M. Debbah |date=August 2014 |accessdate=8 November 2015}}</ref> In any case, caching contents at the edge aim to solve the problem of reducing the end-to-end delay, which is one of the requirements of 5G. The upcoming special issue of IEEE Communications Magazine aims to argue massive content delivery techniques in cache-enabled 5G wireless networks.<ref>{{cite web |url= http://www.comsoc.org/commag/cfp/communications-caching-and-computing-content-centric-mobile-networks |title=Communications, Caching, and Computing for Content-Centric Mobile Networks &#124; IEEE Communications Society |publisher=Comsoc.org |date=2016-01-01 |accessdate=2016-01-14}}</ref>
*Advanced interference and mobility management, achieved with the cooperation of different transmission points with overlapped coverage, and encompassing the option of a flexible use of resources for uplink and downlink transmission in each cell, the option of direct [[device-to-device]] transmission and advanced interference cancellation techniques.<ref name="interference mgmt Gesbert 2010 1">{{cite web |url= http://dx.doi.org/10.1109/JSAC.2010.101202 |title=Multi-cell MIMO cooperative networks: A new look at interference |publisher=[[EURECOM]] |work=IEEE Journal on Selected Areas in Communications, vol. 28, no. 9 |pages=1380–1408 |author1=D. Gesbert |author2=S. Hanly |author3=H. Huang |author4=S. Shamai |author5=O. Simeone |author6=W. Yu |date=December 2010 |accessdate=27 September 2013}}</ref><ref name="interference mgmt fnt 2013 1">{{cite web |url= http://kth.diva-portal.org/smash/get/diva2:608533/FULLTEXT01 |title=Optimal Resource Allocation in Coordinated Multi-Cell Systems |publisher=NOW – The Essence of Knowledge |work=Foundations and Trends in Communications and Information Theory, vol. 9, no. 2-3 |pages=113–381|author1=Emil Björnson |author2=Eduard Jorswieck|year=2013 |accessdate=27 September 2013}}</ref><ref name="interference mgmt Baldemair 2013 1">{{cite web |url= http://dx.doi.org/10.1109/MVT.2012.2234051 |title=Evolving Wireless Communications: Addressing the Challenges and Expectations of the Future |publisher=Ericsson Research |work=IEEE Vehicular Technology Magazine, vol. 8, no. 1 |pages=24–30 |author1=R. Baldemair |author2=E. Dahlman |author3=G. Fodor |author4=G. Mildh |author5=S. Parkvall |author6=Y. Selen |author7=H. Tullberg |author8=K. Balachandran|date=March 2013 |accessdate=27 September 2013}}</ref>
*Advanced interference and mobility management, achieved with the cooperation of different transmission points with overlapped coverage, and encompassing the option of a flexible use of resources for uplink and downlink transmission in each cell, the option of direct [[device-to-device]] transmission and advanced interference cancellation techniques.<ref name="interference mgmt Gesbert 2010 1">{{cite web |url= http://dx.doi.org/10.1109/JSAC.2010.101202 |title=Multi-cell MIMO cooperative networks: A new look at interference |publisher=[[EURECOM]] |work=IEEE Journal on Selected Areas in Communications, vol. 28, no. 9 |pages=1380–1408 |author1=D. Gesbert |author2=S. Hanly |author3=H. Huang |author4=S. Shamai |author5=O. Simeone |author6=W. Yu |date=December 2010 |accessdate=27 September 2013}}</ref><ref name="interference mgmt fnt 2013 1">{{cite web |url= http://kth.diva-portal.org/smash/get/diva2:608533/FULLTEXT01 |title=Optimal Resource Allocation in Coordinated Multi-Cell Systems |publisher=NOW – The Essence of Knowledge |work=Foundations and Trends in Communications and Information Theory, vol. 9, no. 2-3 |pages=113–381|author1=Emil Björnson |author2=Eduard Jorswieck|year=2013 |accessdate=27 September 2013}}</ref><ref name="interference mgmt Baldemair 2013 1">{{cite web |url= http://dx.doi.org/10.1109/MVT.2012.2234051 |title=Evolving Wireless Communications: Addressing the Challenges and Expectations of the Future |publisher=Ericsson Research |work=IEEE Vehicular Technology Magazine, vol. 8, no. 1 |pages=24–30 |author1=R. Baldemair |author2=E. Dahlman |author3=G. Fodor |author4=G. Mildh |author5=S. Parkvall |author6=Y. Selen |author7=H. Tullberg |author8=K. Balachandran|date=March 2013 |accessdate=27 September 2013}}</ref>
Riga 99: Riga 102:


== History ==
== History ==
*In April 2008, [[NASA]] partnered with Geoff Brown and [[Machine-to-Machine Intelligence (M2Mi) Corp]] to develop 5G communication technology<ref name="NASA 5G" />
*In April 2008, [[NASA]] partnered with Geoff Brown and [[Machine-to-Machine Intelligence (M2Mi) Corp]] to develop 5G communication technology<ref name="NASA 5G">{{cite web|url=http://www.nasa.gov/home/hqnews/2008/apr/HQ_08107_Ames_nanosat.html|title=NASA Ames Partners With M2MI For Small Satellite Development|publisher=}}</ref>
*In 2008, the South Korean IT R&D program of "5G mobile communication systems based on beam-division multiple access and relays with group cooperation" was formed.<ref name="multi-hop nets Korea 2008 1"/>
*In 2008, the South Korean IT R&D program of "5G mobile communication systems based on beam-division multiple access and relays with group cooperation" was formed.<ref name="multi-hop nets Korea 2008 1"/>
*In August 2012, New York University founded [[NYU WIRELESS ]], a multi-disciplinary academic research center that has conducted pioneering work in 5G wireless communications.<ref>{{cite web|url=http://nyuwireless.com/ |title=The world's first academic research center combining Wireless, Computing, and Medical Applications |publisher=Nyu Wireless |date=2014-06-20 |accessdate=2016-01-14}}</ref><ref>{{cite web|author=|url=http://www.fiercewireless.com/tech/special-reports/nyu-wireless-rappaport-envisions-5g-millimeter-wave-future |title=NYU Wireless' Rappaport envisions a 5G, millimeter-wave future - FierceWirelessTech |publisher=Fiercewireless.com |date=2014-01-13 |accessdate=2016-01-14}}</ref><ref>{{cite web |last=Alleven |first=Monica |url=http://www.fiercewireless.com/tech/story/nyu-wireless-says-us-falling-behind-5g-presses-fcc-act-now-mmwave-spectrum/2015-01-14 |title=NYU Wireless says U.S. falling behind in 5G, presses FCC to act now on mmWave spectrum |publisher=Fiercewireless.com |date=2015-01-14 |accessdate=2016-01-14}}</ref>
*In August 2012, New York University founded [[NYU WIRELESS ]], a multi-disciplinary academic research center that has conducted pioneering work in 5G wireless communications.<ref>{{cite web|url=http://nyuwireless.com/ |title=The world's first academic research center combining Wireless, Computing, and Medical Applications |publisher=Nyu Wireless |date=2014-06-20 |accessdate=2016-01-14}}</ref><ref>{{cite web|author=|url=http://www.fiercewireless.com/tech/special-reports/nyu-wireless-rappaport-envisions-5g-millimeter-wave-future |title=NYU Wireless' Rappaport envisions a 5G, millimeter-wave future - FierceWirelessTech |publisher=Fiercewireless.com |date=2014-01-13 |accessdate=2016-01-14}}</ref><ref>{{cite web |last=Alleven |first=Monica |url=http://www.fiercewireless.com/tech/story/nyu-wireless-says-us-falling-behind-5g-presses-fcc-act-now-mmwave-spectrum/2015-01-14 |title=NYU Wireless says U.S. falling behind in 5G, presses FCC to act now on mmWave spectrum |publisher=Fiercewireless.com |date=2015-01-14 |accessdate=2016-01-14}}</ref>
Riga 121: Riga 124:
* On the 22nd of February 2016, [[Samsung]] and [[Verizon]] joined to begin trial for 5G.
* On the 22nd of February 2016, [[Samsung]] and [[Verizon]] joined to begin trial for 5G.
-->
-->

== Note ==
== Note ==
{{references|30em}}
{{references|30em}}

Versione delle 02:05, 19 mar 2016

Template:Standard Telefonia Mobile

Nell'ambito della telefonia mobile, con il termine 5G (acronimo di 5th (Fifth) Generation) si indicano le tecnologie e gli standard di quinta generazione successivi a quelli di quarta generazione, che permettono quindi prestazioni e velocità superiori a quelli dell'attuale tecnologia 4G/IMT-Advanced.

La Next Generation Mobile Networks Alliance definisce i seguenti requisiti per le reti 5G:

  • supportare velocità dati di decine di megabit al secondo per decine di migliaia di utenti
  • offrire simultaneamente 1 gigabit al secondo a più lavoratori di un ufficio posto sullo stesso piano
  • supportare parecchie centinaia di migliaia di connessioni simultanee per installazioni massicce di sensori
  • potenziare significativamente l'efficienza spettrale in confronto al 4G
  • migliorare la copertura
  • potenziare l'efficienza dei segnali
  • ridurre significativamente la latenza in confronto all'LTE.[1]

La Next Generation Mobile Networks Alliance ritiene che il 5G dovrebbe essere presentato entro il 2020 per soddisfare le domande di imprese e comsumatori.[2] Oltre a fornire semplicemente velocità più elevate, la NGMN prevede che le reti 5G dovranno anche soddisfare le esigenze di nuovi casi d'uso, come l'Internet delle cose (attrezzature di rete negli edifici o nei veicoli per accedere al web) nonché servizi di trasmissione e linee di comunicazione d'importanza vitale in occasione di disastri naturali.

Sebbene gli standard aggiornati in esame definiscano capacità superiori a quelle fissate nelle attuali norme 4G, queste nuove capacità sono state raggruppate sotto gli attuali standard ITU-T 4G.

Antefatto

Una nuova generazione di telefonia mobile è apparsa approssimativamente ogni 10 anni da quando il primo sistema 1G, il Nordisk MobilTelefoni, fu introdotto nel 1982. Il primo sistema 2G fu sviluppato commercialmente nel 1992 e il primo sistema 3G apparve nel 2001. I sistemi 4G pienamente conformi all'IMT Advanced furono standardizzati per la prima volta nel 2012. Lo sviluppo degli standard 2G (GSM) e 3G (IMT-2000 e UMTS) richiese circa 10 anni dall'inizio ufficiale dei progetti di R&S, e lo sviluppo dei sistemi 4G cominciò nel 2001 o 2002.[3][4] Le tecnologie precedenti sono state presenti sul mercato alcuni anni prima della nuova generazione mobile, ad esempio il sistema pre-3G CdmaOne/IS95 negli Stati Uniti nel 1995, i sistemi pre-4G Mobile WiMAX in Corea del Sud nel 2006 e l'LTE prima versione in Scandinavia nel 2009. Nell'aprile 2008, la NASA si associò alla Machine-to-Machine Intelligence (M2Mi) Corp per sviluppare la tecnologia di comunicazione 5G.[5]

Le generazioni mobili si riferiscono tipicamente a standard per cellulari non retrocompatibili che seguono i requisiti stabiliti dalla ITU-R, come l'IMT-2000 per il 3G e l'IMT-Advanced per il 4G. In parallelo allo sviluppo delle generazioni mobili ITU-R, l'IEEE e altri organismi di standardizzazione sviluppano anche tecnologie di comunicazione senza fili, spesso per velocità dati superiori, frequenze superiori, bande di trasmissione più corte, senza supporto per il roaming tra i punti di accesso e uno schema di accesso multiplo relativamente limitato. Il primo standard IEEE in gigabit fu l'IEEE 802.11ac, commercialmente disponibile fin dal 2013, che fu presto seguito dallo standard in multigigabit WiGig o IEEE 802.11ad.

Dibattito

In base alle suddette osservazioni, alcune fonti suggeriscono che una nuova generazione di standard 5G potrebbe essere introdotta agli inizi degli anni 2020.[6][7] Tuttavia, continuò un importante dibattito su ciò che il 5G riguarda esattamente. Anteriormente al 2012, alcuni rappresentanti dell'industria espressero scetticismo verso il 5G.[8] Il 3GPP tenne una conferenza nel settembre 2015 per pianificare lo sviluppo del nuovo standard.[9]

Alle nuove generazioni mobili sono tipicamente assegnate nuove bande di frequenza e maggiore larghezza di banda spettrale per canale di frequenza (1G fino a 30 kHz, 2G fino a 200 kHz, 3G fino a 5 MHz e 4G fino a 20 MHz), ma gli scettici sostengono che ci sia poco spazio per larghezze di bande più ampie e nuove bande di frequenza adatte al radiomobile terrestre.[8] Le frequenze più alte si sovrapporrebbero alle trasmissioni in banda K dei satelliti per telecomunicazioni.[10] Dal punto di vista degli utenti, le precedenti generazioni mobili hanno implicato un sostanziale aumento nella velocità di trasmissione di picco (cioè le velocità di trasmissione della rete a strati fisici per la comunicazione a breve distanza), fino a 1 gigabit per secondo offerta dal 4G.

Se il 5G appare e riflette queste prognosi, allora la principale differenza, da un punto di vista dell'utente, tra il 4G e il 5G deve essere qualcosa di diverso dalla maggiore velocità (aumentata velocità di trasmissione di picco). Ad esempio, un più elevato numero di dispositivi connessi simultaneamente, una più elevata efficienza spettrale di sistema (volume di dati per unità di area), un più basso consumo delle batterie, una più bassa probabilità di interruzione (migliore copertura), alte velocità di trasmissione in porzioni più grandi dell'area di copertura, latenze inferiori, un più elevato numero di dispositivi supportati, costi più bassi per l'installazione delle infrastrutture, una più elevata versatilità e scalabilità, o una più elevata affidabilità delle comunicazioni. Questi sono gli obiettivi in parecchi dei documenti e progetti di ricerca che seguono.

GSMHistory.com[11] ha registrato tre visioni molto distinte delle reti 5G che erano emerse verso il 2014:

  • Una rete mobile super efficiente che fornisce una rete con prestazioni migliori a un costo d'investimento inferiore. Si rivolge al bisogno pressante degli operatori di rete mobile per vedere il costo unitario del trasporto dati calare grosso modo alla stessa velocità alla quale sta salendo il volume della domanda di dati. Sarebbe un balzo in avanti in efficienza basato sulla filosofia delle “reti attente alla domanda” (Demand Attentive Network, DAN) della IET (Institution of Engineering and Technology).[12]
  • Una rete mobile super veloce comprendente la prossima generazione di piccole celle densamente raggruppate per dare una copertura continua almeno sulle aree urbane e portante il mondo alla frontiera finale della vera “mobilità su ampia area”. Richiederebbe accesso allo spettro sotto i 4 GHz forse attraverso la prima implementazione globale al mondo dell'accesso dinamico allo spettro (Dynamic Spectrum Access).
  • Una rete senza fili in fibra concentrata che usa, per la prima volta per l'accesso senza fili a Internet, le bande delle onde millimetriche (20 – 60 GHz) così da permettere canali radio con ampiezza di banda molto larga capaci di supportare velocità di accesso ai dati fino a 10 Gbit/s. La,p connessione comprende essenzialmente collegamenti senza fili “corti” all'estremità del cavo in fibra ottica locale. Sarebbe più un servizio “nomade” (come il Wi-Fi) piuttosto che un servizio “mobile” su ampia area.

Nel suo libro bianco, 5G Empowering Vertical Industries (“Il 5G autorizza le industrie verticali”), il 5G PPP, il programma collaborativo di ricerca organizzato come parte del programma della Commissione europea Horizon 2020, suggerisce che per supportare i principali settori verticali in Europa - cioè automobili, trasporti, assistenza sanitaria, energia, manifattura e media e intrattenimento - i più importanti requisiti prestazionali dell'infrastruttura 5G sono una latenza sotto 5 ms, supporto per densità di dispositivi fino a 100 dispositivi/m2 e un'area di copertura affidabile, e che un'installazione riuscita del 5G integrerà le tecnologie di telecomunicazione inclusa quella mobile, fissa, ottica e satellitare (sia GEO che MEO).[13]

Note

  1. ^ Jo Best, The race to 5G: Inside the fight for the future of mobile as we know it, su techrepublic.com, TechRepublic, 28 agosto 2013. URL consultato il 14 gennaio 2016.
  2. ^ NGMN Alliance, 5G White Paper (PDF), su ngmn.org, 15 febbraio 2015. URL consultato il 2 marzo 2016.
  3. ^ Shakil Akhtar, 2G-5G Networks: Evolution of Technologies, Standards, and Deployment (PDF), a cura di Margherita Pagani, 2ª ed., Hershey, Pennsylvania, US, IGI Global, agosto 2008 [2005], pp. 522–532, DOI:10.4018/978-1-60566-014-1.ch070, ISBN 978-1-60566-014-1. URL consultato il 2 giugno 2011 (archiviato dall'url originale il 2 giugno 2011).
  4. ^ Emerging Wireless Technologies; A look into the future of wireless communication – beyond 3G, SafeCom (un programma del Dipartimento della Sicurezza Interna degli Stati Uniti d'America). URL consultato il 27 settembre 2013.
    «Poiché si sta seguendo il modello generale di 10 anni per sviluppare un nuovo sistema mobile, quella linea temporale suggerirebbe che il 4G dovrebbe essere operativo intorno al 2011»
  5. ^ NASA Ames Partners With M2MI For Small Satellite Development, su nasa.gov, 24 aprile 2008. URL consultato il 2 marzo 2016.
  6. ^ Xichun Li, Abudulla Gani, Rosli Salleh e Omar Zakaria, The Future of Mobile Wireless Communication Networks (PDF), International Conference on Communication Software and Networks, febbraio 2009, ISBN 978-0-7695-3522-7. URL consultato il 27 settembre 2013.
  7. ^ The METIS 2020 Project – Mobile and Wireless Communication Enablers for the 2020 Information Society (PDF), su metis2020.com, METIS, 6 luglio 2013. URL consultato il 27 settembre 2013.
  8. ^ a b Interview with Ericsson CTO: There will be no 5G - we have reached the channel limits, su dnaindia.com, DNA India, 23 maggio 2011. URL consultato il 27 settembre 2013.
  9. ^ RAN 5G Workshop - The Start of Something, su 3gpp.org, 3GPP, 19 settembre 2015. URL consultato il 30 settembre 2015.
  10. ^ In 5G proceeding, SpaceX urges FCC to protect future satellite ventures, su FierceWirelessTech. URL consultato il 10 febbraio 2015.
  11. ^ what is 5g, 5g visions,, su GSM History: History of GSM, Mobile Networks, Vintage Mobiles, GSMHistory.com.
  12. ^ Demand Attentive Networks (DAN), su theiet.org.
  13. ^ 5G Empowering Vertical Industries White Paper). sito=5G PPP (PDF), su 5g-ppp.eu, febbraio 2016. URL consultato il 1º marzo 2016.

Voci correlate

Ulteriori letture

  • Theodore S. Rappaport, Robert W. Heath, Jr., Robert C. Daniels e James N. Murdock, Millimeter Wave Wireless Communications ["Comunicazioni senza fili con onde millimetriche"], Prentice Hall, 2014, ISBN 978-0-13-217228-8. Questo testo, lungo quasi 700 pagine, copre le aree tecniche riguardanti le potenziali tecnologie 5G, inclusi gli standard per le principali reti globali senza fili di tipo locale (wireless local-area networks, WLAN) e personale (wireless personal local-area networks, WPAN) da 60 GHz.

Collegamenti esterni

  Portale Telefonia: accedi alle voci di Wikipedia che trattano di telefonia