Costante di dissociazione: differenze tra le versioni

Da Wikipedia, l'enciclopedia libera.
Vai alla navigazione Vai alla ricerca
Contenuto cancellato Contenuto aggiunto
FixBot (discussione | contributi)
m Aggiungo lo spazio prima del simbolo °C, in accordo con le convenzioni per i sistemi di misura
JAnDbot (discussione | contributi)
Riga 163: Riga 163:
[[en:Dissociation constant]]
[[en:Dissociation constant]]
[[es:Constante de disociación]]
[[es:Constante de disociación]]
[[et:Dissotsiatsiooniaste]]
[[fr:Constante de dissociation]]
[[fr:Constante de dissociation]]
[[he:קבוע הדיסוציאציה]]
[[he:קבוע הדיסוציאציה]]

Versione delle 14:17, 6 ott 2009

In chimica e biochimica, una costante di dissociazione è un tipo specifico di equilibrio costante che misura la tendenza di un composto a separarsi (dissociarsi) in modo reversibile in componenti più piccoli (ad esempio, un sale che si scinde negli ioni che lo compongono). La costante di dissociazione è denominata con la sigla Kd, ed è l'inverso della costante di associazione. Nel caso specifico dei sali, la costante di dissociazione è anche detta costante di ionizzazione.

In una reazione generale

dove un composto AxBy si dissocia in x componenti A e y componenti B, la costante di dissociazione Kd è definita

dove [A], [B] e [AxBy] sono rispettivamente le concentrazioni molari di A, B e del complesso AxBy.

Legame proteina-ligando

La costante di dissociazione è comunemente usata per descrivere l'affinità tra un ligando () (ad esempio una droga) e una proteina (); essa si usa, per esempio, per descrivere quanto è forte il legame tra un ligando e una particolare proteina. Le affinità ligando-proteina sono influenzate da interazioni intermolecolari non covalenti tra le due molecole, come i legami a idrogeno, le interazioni elettrostatiche, l'idrofobia e le forze di Van der Waals. Esse possono essere influenzate anche da alte concentrazioni di altre macromolecole, il che provoca affollamento macromolecolare (macromolecular crowding).[1][2] La formazione di un complesso ligando-proteina () può essere descritta come un processo a due stadi

nel quale la corrispondente costante di dissociazione è definita come

dove [], [] e [] rappresentano rispettivamente le concentrazioni della proteina, del ligando e del complesso. La costante di dissociazione ha unità molari (M), che corrispondono alla concentrazione del ligando [], alla quale il sito di legame di una particolare proteina è per metà occupato, ossia la concentrazione del ligando alla quale la concentrazione delle proteine aventi il sito occupato dal ligando [] eguaglia la concentrazione delle proteine aventi il sito non occupato dal ligando []. Più è bassa la costante di dissociazione, più il ligando è fortemente legato, e maggiore è quindi l'affinità tra ligando e proteina. Per esempio, un ligando con una costante di dissociazione nanomolare (nM) si lega più saldamente a una particolare proteina con una costante di dissociazione micromolare (M). Costanti di dissociazione sub-nanomolari risultanti da un'interazione di legame tra due molecole sono rare. Ciononostante, ci sono alcune importanti eccezioni. La biotina e l'avidina si legano con una costante di dissociazione di circa M = 1 fM = 0.000001 nM.[3] Le proteine inibitrici della ribonucleasi (ribonuclease inhibitors) possono altrettanto legarsi alla ribonucleasi con un'affinità similmente pari a M.[4]

La costante di dissociazione per una particolare interazione ligando-proteina può variare significativamente a seconda delle condizioni chimico-fisiche della soluzione (ad esempio, la temperatura, il pH e la concentrazione salina). Differenti condizioni portano a una modificazione della forza delle interazioni intermolecolari non covalenti che tengono insieme un particolare complesso ligando-proteina. I farmaci possono indurre effetti collaterali dannosi attraverso l'interazione con proteine con le quali non era previsto che interagissero; pertanto, molte ricerche farmaceutiche sono finalizzate a sintetizzare farmaci che si legano soltanto con le proteine bersaglio che possiedono un'alta affinità (solitamente tra 0,1 e 10 nM), oltre che ad aumentare l'affinità tra un particolare farmaco e la sua proteina bersaglio in vivo.

Anticorpi

Nel caso specifico degli anticorpi, viene solitamente impiegata la costante di affinità. Essa è l'inverso della costante di dissociazione.

dove [Ab] è l'anticorpo, e [Ag] l'antigene. Questo equilibrio chimico è anche il rapporto tra la quantità di anticorpi on-rate, ossia che si legano con l'antigene per formare il complesso anticorpo-antigene [AbAg], e la quantità di anticorpi off-rate, ossia che si distaccano dall'antigene. Due anticorpi possono pertanto avere la stessa affinità, ma uno dei due potrebbe avere un'on-rate e un'off-rate molto alte, mentre l'altro potrebbe averle entrambe basse.

Diversa notazione

Una costante di dissociazione è talvolta espressa dal suo p, che è definito come

Questi p sono usati prevalentemente per dissociazioni covalenti (cioè reazioni in cui vengono creati o rotti legami chimici), in quanto questo tipo di costanti di dissociazione possono variare notevolmente.

Costante di dissociazione dell'acqua

In quanto caso particolare molto frequente, la costante di dissociazione dell'acqua è spesso espressa come Kw:

La concentrazione di acqua non è inclusa nella definizione di Kw, per le ragioni trattate nell'articolo costante di equilibrio. Il valore di Kw varia con la temperatura, come mostrato nella tabella qui sotto. Di questa variazione si deve tenere conto nel compiere misurazioni precise di quantità come il pH.

Temperatura dell'acqua Kw*10-14 pKw
0 °C 0.1 14.92
10 °C 0.3 14.52
18 °C 0.7 14.16
25 °C 1.2 13.92
30 °C 1.8 13.75
50 °C 8.0 13.10
60 °C 12.6 12.90
70 °C 21.2 12.67
80 °C 35 12.46
90 °C 53 12.28
100 °C 73 12.14

Reazioni acido-base

Per la deprotonazione degli acidi, K è conosciuta come Ka, la costante di dissociazione acida. Gli acidi forti, per esempio l'acido solforico o l'acido fosforico, hanno costanti di dissociazione elevate; gli acidi deboli, come l'acido acetico, hanno costanti di dissociazione più basse. Una molecola può possedere diverse costanti di dissociazione acida. A questo proposito, a seconda del numero di protoni che possono cedere, dividiamo gli acidi in monoprotici, diprotici e triprotici. I primi (ad esempio l'acido acetico o lo ione ammonio) hanno solo un gruppo dissociabile; i secondi (acido carbonico, bicarbonato, glicina) hanno due gruppi dissociabili; i terzi (acido fosforico) hanno tre gruppi dissociabili. Nel caso di molteplici valori di pK, essi sono indicati da indici: pK1, pK2, pK3 e così via. Per gli amminoacidi, la costante pK1 si riferisce ai loro gruppi carbossilici (-COOH), la costante pK2 ai loro gruppi amminici (-NH3), e la costante pK3 è il valore pK dei loro sostituenti.


Voci correlate

Note

  1. ^ Zhou HX, Rivas G, Minton AP, Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences, in Annu Rev Biophys, vol. 37, 2008, pp. 375–97, DOI:10.1146/annurev.biophys.37.032807.125817.
  2. ^ Minton AP, The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media, in J. Biol. Chem., vol. 276, n. 14, 2001, pp. 10577–80, DOI:10.1074/jbc.R100005200.
  3. ^ Livnah O, Bayer EA. et al., Three-dimensional structures of avidin and the avidin-biotin complex, in Proc Natl Acad Sci USA., vol. 90, n. 11, 1993, pp. 5076–5080, DOI:10.1073/pnas.90.11.5076.
  4. ^ Johnson RJ, McCoy JG. et al., Inhibition of Human Pancreatic Ribonuclease by the Human Ribonuclease Inhibitor Protein, in Journal of Molecular Biology, vol. 368, n. 2, April 2007, pp. 434–449, DOI:10.1016/j.jmb.2007.02.005.
  Portale Chimica: il portale della scienza della composizione, delle proprietà e delle trasformazioni della materia