Carattere di Dirichlet

Da Wikipedia, l'enciclopedia libera.

In matematica, un carattere di Dirichlet modulo k è una funzione aritmetica completamente moltiplicativa che estende a tutti i naturali un carattere del gruppo delle unità di Z/qZ. Più precisamente, dato un intero positivo q, una funzione aritmetica χ(n) si dice essere un carattere modulo q se esiste un omomorfismo f dal gruppo degli invertibili di Z/qZ negli invertibili di C tale che

\chi\left(n\right)=\left\{\begin{matrix}0 & \mbox{se}\ \left(n,q \right)>1, \\ f\left(n\right) & \mbox{altrimenti.} \end{matrix}\right.

Se come funzione f si prende la funzione costantemente uguale a 1, allora il carattere χ1 associato ad f è detto carattere principale modulo q.

Se un carattere di Dirichlet modulo q si può scrivere come prodotto di un carattere modulo un intero k strettamente minore di q (che dovrà necessariamente essere un divisore di q) e il carattere principale modulo q, allora esso verrà detto non primitivo. I caratteri che non sono non primitivi, sono detti primitivi.

Proprietà elementari[modifica | modifica wikitesto]

Dato che per ogni intero positivo q vi sono esattamente φ(q) caratteri di Z/qZ, si ha che lo stesso vale per i caratteri di Dirichlet modulo q. Inoltre, dalla definizione discende subito che essi sono completamente moltiplicativi, periodici di periodo q e che hanno immagine nell'insieme comprendente 0 e le radici φ(q)-esime dell'unità.

Dato un carattere di Dirichlet \chi, si può definire il suo carattere coniugato \overline\chi, definendolo semplicemente come

\overline\chi(n)=\overline{\chi(n)}.

Chiaramente, se \chi è un carattere di Dirichlet modulo q, anche \overline\chi lo è.

Un'altra importante proprietà dei caratteri di Dirichlet è la seguente: se χ è un carattere modulo q, allora per ogni coppia di interi m ed n con n e q coprimi si ha

\sum_{\chi \text{ mod }q}\chi(m)\overline{\chi}(n)=\begin{cases}\varphi(q) & \text{se }m\equiv n \text{ mod }q,\\
0 & \text{altrimenti,}
\end{cases}

ove la somma è su tutti i caratteri modulo q.

Voci correlate[modifica | modifica wikitesto]

Bibliografia[modifica | modifica wikitesto]

matematica Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica