Lista di superconduttori: differenze tra le versioni

Da Wikipedia, l'enciclopedia libera.
Vai alla navigazione Vai alla ricerca
Contenuto cancellato Contenuto aggiunto
Nuova pagina: La tabella seguente elenca alcuni materiali superconduttori, insieme ai relativi parametri. ''X:Y'' indica il materiale ''X'' drogato con ''Y''. '...
 
Nessun oggetto della modifica
Riga 226: Riga 226:


==Non metalli==
==Non metalli==
Con ''non metalli'' si intendono materiali non considerati normalmente metalli, ma che possono diventare superconduttori se molto drogati.

{|class="wikitable sortable"
|-
! Formula
! ''T''<sub>C</sub> (K)
! ''H''<sub>C</sub> (T)
! Tipo
! BCS
| Note
|-
|Ba<sub>8</sub>Si<sub>46</sub>
|8.07
|0.008
|2
|sì
|<ref>{{cite journal|last1=Rachi|first1=Takeshi|last2=Kumashiro|first2=Ryotaro|last3=Fukuoka|first3=Hiroshi|last4=Yamanaka|first4=Shoji|last5=Tanigaki|first5=Katsumi|title=Sp3-network superconductors made from IVth-group elements|doi=10.1016/j.stam.2006.02.012|year=2006|pages=S88|volume=7|journal=Science and Technology of Advanced Materials|format= free download}}</ref>
|-
|C<sub>6</sub>Ca
|11.5
|0.95
|2
|
|<ref name=cac6>{{cite journal|last1=Emery|first1=Nicolas|last2=Hérold|first2=Claire|last3=Marêché|first3=Jean-François|last4=Lagrange|first4=Philippe|doi=10.1088/1468-6996/9/4/044102|title=Synthesis and superconducting properties of CaC6|year=2008|pages=044102|volume=9|journal=Science and Technology of Advanced Materials|format= free download}}</ref>
|-
|C<sub>6</sub>Li<sub>3</sub>Ca<sub>2</sub>
|11.15
|
|2
|
|<ref name=cac6/>
|-
|C<sub>8</sub>K
|0.14
|
|2
|
|<ref name=cac6/>
|-
|C<sub>8</sub>KHg
|1.4
|
|2
|
|<ref name=cac6/>
|-
|C<sub>6</sub>K
|1.5
|
|2
|
|<ref name=gic>{{cite journal| author =I.T Belash et al. |title =Superconductivity of GIC with Li, Na and K| journal= Synthetic Metals| volume =34| year =1990| page =455| doi=10.1016/0379-6779(89)90424-4}}</ref>
|-
|C<sub>3</sub>K
|3.0
|
|2
|
|<ref name=gic/>
|-
|C<sub>3</sub>Li
|<0.35
|
|2
|
|<ref name=gic/>
|-
|C<sub>2</sub>Li
|1.9
|
|2
|
|<ref name=gic/>
|-
|C<sub>3</sub>Na
|2.3-3.8
|
|2
|
|<ref name=gic/>
|-
|C<sub>2</sub>Na
|5.0
|
|2
|
|<ref name=gic/>
|-
|C<sub>8</sub>Rb
|0.025
|
|2
|
|<ref name=cac6/>
|-
|C<sub>6</sub>Sr
|1.65
|
|2
|
|<ref name=cac6/>
|-
|C<sub>6</sub>Yb
|6.5
|
|2
|
|<ref name=cac6/>
|-
|[[Fullerene|C<sub>60</sub>Cs<sub>2</sub>Rb]]
|33
|
|2
|sì
|<ref>{{cite journal | author = K. Tanigaki T. W. Ebbesen S. Saito J. Mizuki J. S. Tsai Y. Kubo & S. Kuroshima| year = 1991 | journal = [[Nature (journal)|Nature]] | volume = 352 | pages = 222–223| doi = 10.1038/352222a0 | title = Superconductivity at 33 K in CsxRbyC60}}</ref>
|-
|[[Fullerene|C<sub>60</sub>K<sub>3</sub>]]
|19.8
|0.013
|2
|sì
|<ref>{{cite journal|last1=Xiang|first1=X. -D.|last2=Hou|first2=J. G.|last3=Briceno|first3=G.|last4=Vareka|first4=W. A.|last5=Mostovoy|first5=R.|last6=Zettl|first6=A.|last7=Crespi|first7=V. H.|last8=Cohen|first8=M. L.|title=Synthesis and Electronic Transport of Single Crystal K3C60|journal=Science|volume=256|issue=5060|pages=1190|year=1992|pmid=17795215|doi=10.1126/science.256.5060.1190}}</ref><ref>{{cite journal|last1=Rachi|first1=Takeshi|last2=Kumashiro|first2=Ryotaro|last3=Fukuoka|first3=Hiroshi|last4=Yamanaka|first4=Shoji|last5=Tanigaki|first5=Katsumi|title=Sp3-network superconductors made from IVth-group elements|doi=10.1016/j.stam.2006.02.012|year=2006|pages=S88|volume=7|journal=Science and Technology of Advanced Materials |format=free download}}</ref>
|-
|[[Fullerene|C<sub>60</sub>Rb<sub>X</sub>]]
|28
|
|2
|sì
|<ref>{{cite journal|last1=Rosseinsky|first1=M.|last2=Ramirez|first2=A.|last3=Glarum|first3=S.|last4=Murphy|first4=D.|last5=Haddon|first5=R.|last6=Hebard|first6=A.|last7=Palstra|first7=T.|last8=Kortan|first8=A.|last9=Zahurak|first9=S.|title=Superconductivity at 28 K in Rb_{x}C_{60}|journal=Physical Review Letters|volume=66|pages=2830|year=1991|doi=10.1103/PhysRevLett.66.2830}}</ref>
|-
|[[Diamante|Diamante:B]]
|11.4
|4
|2
|sì
|<ref name="nature">E. Ekimov et al. "Superconductivity in diamond" [http://www.nature.com/nature/journal/v428/n6982/abs/nature02449.html Nature 428 (2004) 542] ([http://www.nims.go.jp/NFM/paper1/SuperconductingDiamond/01nature02449.pdf free download]) </ref><ref>{{cite journal|last1=Ekimov|first1=Evgeny A|last2=Sidorov|first2=Vladimir A|last3=Zoteev|first3=Andrey V|last4=Lebed|first4=Yury B|last5=Thompson|first5=Joe D|last6=Stishov|first6=Sergey M|doi=10.1088/1468-6996/9/4/044210|title=Structure and superconductivity of isotope-enriched boron-doped diamond|year=2008|pages=044210|volume=9|journal=Science and Technology of Advanced Materials |format=free download}}</ref><ref>{{cite journal|last1=Takano|first1=Y|last2=Takenouchi|first2=T|last3=Ishii|first3=S|last4=Ueda|first4=S|last5=Okutsu|first5=T|last6=Sakaguchi|first6=I|last7=Umezawa|first7=H|last8=Kawarada|first8=H|last9=Tachiki|first9=M|title=Superconducting properties of homoepitaxial CVD diamond|journal=Diamond and Related Materials|volume=16|pages=911|year=2007|doi=10.1016/j.diamond.2007.01.027 }}</ref>
|-
|[[Nitruro di indio|InN]]
|3
|
|2
|sì
|<ref>{{cite journal|last1=Inushima|first1=Takashi|doi=10.1016/j.stam.2006.05.009|title=Electronic structure of superconducting InN|year=2006|pages=S112|volume=7|journal=Science and Technology of Advanced Materials |format=free download}}</ref>
|-
|[[ossido di indio|In<sub>2</sub>O<sub>3</sub>]]
|3.3
|~3
|2
|sì
|<ref>{{cite journal|last1=Makise|first1=Kazumasa|last2=Kokubo|first2=Nobuhito|last3=Takada|first3=Satoshi|last4=Yamaguti|first4=Takashi|last5=Ogura|first5=Syunsuke|last6=Yamada|first6=Kazumasa|last7=Shinozaki|first7=Bunjyu|last8=Yano|first8=Koki|last9=Inoue|first9=Kazuyoshi|title=Superconductivity in transparent zinc-doped In2O3films having low carrier density|doi=10.1088/1468-6996/9/4/044208|year=2008|pages=044208|volume=9|journal=Science and Technology of Advanced Materials |format=free download}}</ref>
|-
|[[Silicio|Si:B]]
|0.4
|0.4
|2
|sì
|<ref>E. Bustarret et al. [http://www.nature.com/nature/journal/v444/n7118/abs/nature05340.html Nature 444 (2006) 465]</ref>
|-
|[[Carburo di silicio|SiC:B]]
|1.4
|0.008
|1
|sì
|<ref name=muranaka>{{cite journal|last1=Muranaka|first1=Takahiro|last2=Kikuchi|first2=Yoshitake|last3=Yoshizawa|first3=Taku|last4=Shirakawa|first4=Naoki|last5=Akimitsu|first5=Jun|title=Superconductivity in carrier-doped silicon carbide|doi=10.1088/1468-6996/9/4/044204|year=2008|pages=044204|volume=9|journal=Science and Technology of Advanced Materials |format=free download}}</ref>
|-
|[[Carburo di silicio|SiC:Al]]
|1.5
|0.04
|2
|sì
|<ref name="muranaka"/>
|}

==[[Lega (metallurgia)|Leghe]] binarie==
{|class="wikitable sortable"
|-
! Formula
! ''T''<sub>C</sub> (K)
! ''H''<sub>C</sub> (T)
! Tipo
! BCS
| Note
|-
|[[Esaboruro di lantanio|LaB<sub>6</sub>]]
|0.45
|
|
|sì
|<ref>{{cite journal| author = G. Schell, H. Winter, H. Rietschel, and F. Gompf| journal = Phys. Rev. B | volume = 25 | year = 1982| page = 1589| title= Electronic structure and superconductivity in metal hexaborides | doi =10.1103/PhysRevB.25.1589 }}</ref>
|-
|[[Diboruro di magnesio|MgB<sub>2</sub>]]
|39
|74
|2
|sì
|<ref>{{cite journal|last1=Nagamatsu|first1=Jun|last2=Nakagawa|first2=Norimasa|last3=Muranaka|first3=Takahiro|last4=Zenitani|first4=Yuji|last5=Akimitsu|first5=Jun|title=Superconductivity at 39 K in magnesium diboride.|journal=Nature|volume=410|issue=6824|pages=63|year=2001|pmid=11242039|doi=10.1038/35065039}}</ref>
|-
|Nb<sub>3</sub>Al
|18
|
|2
|sì
|<ref name=m/>
|-
|[[Niobio-germanio|Nb<sub>3</sub>Ge]]
|23.2
|37
|2
|sì
|<ref>{{cite journal
| title = Preparation of Nb<sub>3</sub>Ge films by chemical transport reaction and their critical properties
| first = Gin-ichiro
| last = Oya
| coauthors= E. J. Saur
| journal = Journal of Low Temperature Physics
| volume = 34
| issue = 5&ndash;6
| year = 1979
| doi = 10.1007/BF00114941
| pages = 569&ndash;583
| url =http://www.springerlink.com/content/vxl533x085p02128/fulltext.pdf?page=1}}</ref>
|-
|[[Monossido di niobio|NbO]]
|1.38
|
|2
|sì
|<ref>{{cite journal|last1=Hulm|first1=J. K.|last2=Jones|first2=C. K.|last3=Hein|first3=R. A.|last4=Gibson|first4=J. W.|title=Superconductivity in the TiO and NbO systems|journal=Journal of Low Temperature Physics|volume=7|pages=291|year=1972|doi=10.1007/BF00660068}}</ref>
|-
|[[Nitruro di Niobio|NbN]]
|16
|
|2
|sì
|<ref name=m/>
|-
|[[Niobio-stagno|Nb<sub>3</sub>Sn]]
|18.3
|30
|2
|sì
|<ref>{{cite journal | journal = Physical Review | volume = 95 | pages = 1435&ndash;1435 | year = 1954 | title = Superconductivity of Nb<sub>3</sub>Sn | first = B. T. | last = Matthias | coauthors = Geballe, T. H.; Geller, S.; Corenzwit, E. | doi = 10.1103/PhysRev.95.1435}}</ref>
|-
|[[Niobio-titanio|NbTi]]
|10
|15
|2
|sì
|<ref name=m/>
|-
|[[Boruro di ittrio|YB<sub>6</sub>]]
|8.4
|
|2
|sì
|<ref name=fisk>{{cite journal| author = Z. Fisk ''et al.''| journal = Mater. Res. Bull. | volume = 11 | year = 1976| page = 1019| title= Growth of YB6 single crystals | doi =10.1016/0025-5408(76)90179-3 }}</ref><ref>{{cite journal| title =Superconducting energy gap of YB6 studied by point-contact spectroscopy | journal = Physica C| volume= 460-462| year = 2007| page = 626| author = P. Szabo ''et al.''| doi = 10.1016/j.physc.2007.04.135}}</ref><ref name =zrb/>
|-
|[[Nituro di titanio|TiN]]
|5.6
|
|
|sì
|<ref name=prop>{{cite book|page=193|url=http://books.google.com/?id=pbt-RWodmVAC&pg=PA193|title=Handbook of refractory carbides and nitrides: properties, characteristics, processing, and applications|author =Hugh O. Pierson| publisher = William Andrew | year =1996| isbn= 0815513925}}</ref>
|-
|[[Nitruro di zirconio|ZrN]]
|10
|
|
|sì
|<ref name=nitrides>{{cite journal| doi =10.1002/sia.740150606| title =Characterization of nitrogen distribution profiles in fcc transition metal nitrides by means ofTc measurements| year =1990| author =Lengauer, Walter| journal =Surface and Interface Analysis| volume =15| pages =377 }}</ref>
|-
|ZrB<sub>12</sub>
|6.0
|
|1
|sì
|<ref name=zrb>{{cite journal| author = M. I. Tsindlekht ''et al.''| journal = Phys. Rev. B | volume = 78 | year = 2008| page = 024522| title= Linear and nonlinear low-frequency electrodynamics of surface superconducting states in an yttrium hexaboride single crystal | doi = 10.1103/PhysRevB.78.024522 }}</ref>
|-
|}


==Note==
==Note==
{{reflist|2}}
{{reflist|2}}

{{portale|materiali|fisica|chimica}}
[[Categoria:Superconduttività]]

Versione delle 16:36, 26 dic 2010

La tabella seguente elenca alcuni materiali superconduttori, insieme ai relativi parametri.

X:Y indica il materiale X drogato con Y. TC è la temperatura critica più alta riportata in kelvin, HC il campo magnetico critico in tesla. Tipo indica se il superconduttore è di tipo 1 o tipo 2. BCS indica se la superconduttività del materiale è spiegata dalla teoria BCS.

Metalli

Formula TC (K) HC (T) Tipo BCS Note
Al 1.20 0.01 1 [1][2][3]
Cd 0.52 0.0028 1 [2][3]
Gd 1.083 0.0058 1 [4]
Hf 0.165 1 [2]
a-Hg 4.15 0.04 1 [2][3]
b-Hg 3.95 0.04 1 [2][3]
Ga 1.1 0.005 1 [2][3]
1n 3.4 0.03 1 [2][3]
1r 0.14 0.0016[4] 1 [2]
a-La 4.9 1 [2]
b-La 6.3 1 [2]
Mo 0.92 0.0096 1 [2][4]
Nb 9.26 0.82 2 [2][3]
Os 0.65 0.007 1 [2]
Pa 1.4 1 [5]
Pb 7.19 0.08 1 [2][3]
Re 2.4 0.03 1 [2][3][6]
Ru 0.49 0.005 1 [2][3]
Sn 3.72 0.03 1 [2][3]
Ta 4.48 0.09 1 [2][3]
Tc 7.46-11.2 0.04 2 [2][3]
a-Th 1.37 0.013 1 [2][3]
Ti 0.39 0.01 1 [2][3]
Tl 2.39 0.02 1 [2][3]
a-U 0.68 1 [2][5]
b-U 1.8 1 [5]
V 5.03 1 2 [2][3]
W 0.011 0.00012 1 [5][4]
Zn 0.855 0.005 1 [2][3]
Zr 0.55 0.014 1 [2][3]

Non metalli

Con non metalli si intendono materiali non considerati normalmente metalli, ma che possono diventare superconduttori se molto drogati.

Formula TC (K) HC (T) Tipo BCS Note
Ba8Si46 8.07 0.008 2 [7]
C6Ca 11.5 0.95 2 [8]
C6Li3Ca2 11.15 2 [8]
C8K 0.14 2 [8]
C8KHg 1.4 2 [8]
C6K 1.5 2 [9]
C3K 3.0 2 [9]
C3Li <0.35 2 [9]
C2Li 1.9 2 [9]
C3Na 2.3-3.8 2 [9]
C2Na 5.0 2 [9]
C8Rb 0.025 2 [8]
C6Sr 1.65 2 [8]
C6Yb 6.5 2 [8]
C60Cs2Rb 33 2 [10]
C60K3 19.8 0.013 2 [11][12]
C60RbX 28 2 [13]
Diamante:B 11.4 4 2 [14][15][16]
InN 3 2 [17]
In2O3 3.3 ~3 2 [18]
Si:B 0.4 0.4 2 [19]
SiC:B 1.4 0.008 1 [20]
SiC:Al 1.5 0.04 2 [20]

Leghe binarie

Formula TC (K) HC (T) Tipo BCS Note
LaB6 0.45 [21]
MgB2 39 74 2 [22]
Nb3Al 18 2 [2]
Nb3Ge 23.2 37 2 [23]
NbO 1.38 2 [24]
NbN 16 2 [2]
Nb3Sn 18.3 30 2 [25]
NbTi 10 15 2 [2]
YB6 8.4 2 [26][27][28]
TiN 5.6 [29]
ZrN 10 [30]
ZrB12 6.0 1 [28]

Note

  1. ^ Superconducting Transition in Aluminum, in Physical Review, vol. 111, 1958, p. 132, DOI:10.1103/PhysRev.111.132.
  2. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac Superconductivity, in Reviews of Modern Physics, vol. 35, 1963, p. 1, DOI:10.1103/RevModPhys.35.1.
  3. ^ a b c d e f g h i j k l m n o p q r s Superconducting Elements, in Reviews of Modern Physics, vol. 26, 1954, p. 277, DOI:10.1103/RevModPhys.26.277.
  4. ^ a b c d Efthimios Kaxiras, Atomic and electronic structure of solids, Cambridge University Press, 2003, p. 283, ISBN 0521523397.
  5. ^ a b c d R. D. Fowler et al., Superconductivity of Protactinium, in Phys. Rev. Lett., vol. 15, 1965, DOI:10.1103/PhysRevLett.15.860.
  6. ^ Superconductivity of Rhenium, in Physical Review, vol. 88, 1952, p. 309, DOI:10.1103/PhysRev.88.309.
  7. ^ Sp3-network superconductors made from IVth-group elements, in Science and Technology of Advanced Materials, vol. 7, 2006, pp. S88, DOI:10.1016/j.stam.2006.02.012.
  8. ^ a b c d e f g Synthesis and superconducting properties of CaC6, in Science and Technology of Advanced Materials, vol. 9, 2008, p. 044102, DOI:10.1088/1468-6996/9/4/044102.
  9. ^ a b c d e f I.T Belash et al., Superconductivity of GIC with Li, Na and K, in Synthetic Metals, vol. 34, 1990, DOI:10.1016/0379-6779(89)90424-4.
  10. ^ K. Tanigaki T. W. Ebbesen S. Saito J. Mizuki J. S. Tsai Y. Kubo & S. Kuroshima, Superconductivity at 33 K in CsxRbyC60, in Nature, vol. 352, 1991, pp. 222–223, DOI:10.1038/352222a0.
  11. ^ Synthesis and Electronic Transport of Single Crystal K3C60, in Science, vol. 256, n. 5060, 1992, p. 1190, DOI:10.1126/science.256.5060.1190.
  12. ^ Sp3-network superconductors made from IVth-group elements, in Science and Technology of Advanced Materials, vol. 7, 2006, pp. S88, DOI:10.1016/j.stam.2006.02.012.
  13. ^ Superconductivity at 28 K in Rb_{x}C_{60}, in Physical Review Letters, vol. 66, 1991, p. 2830, DOI:10.1103/PhysRevLett.66.2830.
  14. ^ E. Ekimov et al. "Superconductivity in diamond" Nature 428 (2004) 542 (free download)
  15. ^ Structure and superconductivity of isotope-enriched boron-doped diamond, in Science and Technology of Advanced Materials, vol. 9, 2008, p. 044210, DOI:10.1088/1468-6996/9/4/044210.
  16. ^ Superconducting properties of homoepitaxial CVD diamond, in Diamond and Related Materials, vol. 16, 2007, p. 911, DOI:10.1016/j.diamond.2007.01.027.
  17. ^ Electronic structure of superconducting InN, in Science and Technology of Advanced Materials, vol. 7, 2006, pp. S112, DOI:10.1016/j.stam.2006.05.009.
  18. ^ Superconductivity in transparent zinc-doped In2O3films having low carrier density, in Science and Technology of Advanced Materials, vol. 9, 2008, p. 044208, DOI:10.1088/1468-6996/9/4/044208.
  19. ^ E. Bustarret et al. Nature 444 (2006) 465
  20. ^ a b Superconductivity in carrier-doped silicon carbide, in Science and Technology of Advanced Materials, vol. 9, 2008, p. 044204, DOI:10.1088/1468-6996/9/4/044204.
  21. ^ G. Schell, H. Winter, H. Rietschel, and F. Gompf, Electronic structure and superconductivity in metal hexaborides, in Phys. Rev. B, vol. 25, 1982, DOI:10.1103/PhysRevB.25.1589.
  22. ^ Superconductivity at 39 K in magnesium diboride., in Nature, vol. 410, n. 6824, 2001, p. 63, DOI:10.1038/35065039.
  23. ^ Gin-ichiro Oya, E. J. Saur, Preparation of Nb3Ge films by chemical transport reaction and their critical properties, in Journal of Low Temperature Physics, vol. 34, 5–6, 1979, pp. 569–583, DOI:10.1007/BF00114941.
  24. ^ Superconductivity in the TiO and NbO systems, in Journal of Low Temperature Physics, vol. 7, 1972, p. 291, DOI:10.1007/BF00660068.
  25. ^ B. T. Matthias, Geballe, T. H.; Geller, S.; Corenzwit, E., Superconductivity of Nb3Sn, in Physical Review, vol. 95, 1954, pp. 1435–1435, DOI:10.1103/PhysRev.95.1435.
  26. ^ Z. Fisk et al., Growth of YB6 single crystals, in Mater. Res. Bull., vol. 11, 1976, DOI:10.1016/0025-5408(76)90179-3.
  27. ^ P. Szabo et al., Superconducting energy gap of YB6 studied by point-contact spectroscopy, in Physica C, vol. 460-462, 2007, DOI:10.1016/j.physc.2007.04.135.
  28. ^ a b M. I. Tsindlekht et al., Linear and nonlinear low-frequency electrodynamics of surface superconducting states in an yttrium hexaboride single crystal, in Phys. Rev. B, vol. 78, 2008, DOI:10.1103/PhysRevB.78.024522.
  29. ^ Hugh O. Pierson, Handbook of refractory carbides and nitrides: properties, characteristics, processing, and applications, William Andrew, 1996, p. 193, ISBN 0815513925.
  30. ^ Lengauer, Walter, Characterization of nitrogen distribution profiles in fcc transition metal nitrides by means ofTc measurements, in Surface and Interface Analysis, vol. 15, 1990, p. 377, DOI:10.1002/sia.740150606.