Lista di superconduttori

Da Wikipedia, l'enciclopedia libera.

La tabella seguente elenca alcuni materiali superconduttori, insieme ai relativi parametri.

X:Y indica il materiale X drogato con Y. TC è la temperatura critica più alta riportata in kelvin, HC il campo magnetico critico in tesla. Tipo indica se il superconduttore è di tipo 1 o tipo 2. BCS indica se la superconduttività del materiale è spiegata dalla teoria BCS.

Metalli[modifica | modifica wikitesto]

Formula TC (K) HC (T) Tipo BCS Note
Al 1,20 0,01 1 [1][2][3]
Cd 0,52 0,0028 1 [2][3]
Gd 1,083 0,0058 1 [4]
Hf 0,165 1 [2]
a-Hg 4,15 0,04 1 [2][3]
b-Hg 3,95 0,04 1 [2][3]
Ga 1,1 0,005 1 [2][3]
ln 3,4 0,03 1 [2][3]
Ir 0,14 0,0016[4] 1 [2]
a-La 4,9 1 [2]
b-La 6,3 1 [2]
Mo 0,92 0,0096 1 [2][4]
Nb 9,26 0,82 2 [2][3]
Os 0,65 0,007 1 [2]
Pa 1,4 1 [5]
Pb 7,19 0,08 1 [2][3]
Re 2,4 0,03 1 [2][3][6]
Ru 0,49 0,005 1 [2][3]
Sn 3,72 0,03 1 [2][3]
Ta 4,48 0,09 1 [2][3]
Tc 7,46-11,2 0,04 2 [2][3]
a-Th 1,37 0,013 1 [2][3]
Ti 0,39 0,01 1 [2][3]
Tl 2,39 0,02 1 [2][3]
a-U 0,68 1 [2][5]
b-U 1,8 1 [5]
V 5,03 1 2 [2][3]
W 0,011 0,00012 1 [5][4]
Zn 0,855 0,005 1 [2][3]
Zr 0,55 0,014 1 [2][3]

Non metalli[modifica | modifica wikitesto]

Con non metalli si intendono materiali non considerati normalmente metalli, ma che possono diventare superconduttori se molto drogati.

Formula TC (K) HC (T) Tipo BCS Note
Ba8Si46 8,07 0,008 2 [7]
C6Ca 11,5 0,95 2 [8]
C6Li3Ca2 11,15 2 [8]
C8K 0,14 2 [8]
C8KHg 1,4 2 [8]
C6K 1,5 2 [9]
C3K 3,0 2 [9]
C3Li <0,35 2 [9]
C2Li 1,9 2 [9]
C3Na 2,3-3,8 2 [9]
C2Na 5,0 2 [9]
C8Rb 0,025 2 [8]
C6Sr 1,65 2 [8]
C6Yb 6,5 2 [8]
C60Cs2Rb 33 2 [10]
C60K3 19,8 0,013 2 [11][12]
C60RbX 28 2 [13]
Diamante:B 11,4 4 2 [14][15][16]
InN 3 2 [17]
In2O3 3,3 ~3 2 [18]
Si:B 0,4 0,4 2 [19]
SiC:B 1,4 0,008 1 [20]
SiC:Al 1,5 0,04 2 [20]

Leghe binarie[modifica | modifica wikitesto]

Formula TC (K) HC (T) Tipo BCS Note
LaB6 0,45 [21]
MgB2 39 74 2 [22]
Nb3Al 18 2 [2]
Nb3Ge 23,2 37 2 [23]
NbO 1,38 2 [24]
NbN 16 2 [2]
Nb3Sn 18,3 30 2 [25]
NbTi 10 15 2 [2]
YB6 8,4 2 [26][27][28]
TiN 5,6 [29]
ZrN 10 [30]
ZrB12 6,0 1 [28]

Ossopnictidi[modifica | modifica wikitesto]

Formula TC (K) HC (T) Tipo BCS Note
LaO0.89F0.11FeAs 26 [31]
CeFeAsO0.84F0.16 41 [31]
SmFeAsO0.9F0.1 43 [31]
La0.5Y0.5FeAsO0.6 43,1 [32]
NdFeAsO0.89F0.11 52 [31]
PrFeAsO0.89F0.11 52 [33]
GdFeAsO0.85 53,5 [34]
SmFeAsO~0.85 55 [35]

Note[modifica | modifica wikitesto]

  1. ^ John Cochran, Mapother D., Superconducting Transition in Aluminum in Physical Review, vol. 111, 1958, p. 132, DOI:10.1103/PhysRev.111.132.
  2. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac B. Matthias, Geballe T., Compton V., Superconductivity in Reviews of Modern Physics, vol. 35, 1963, p. 1, DOI:10.1103/RevModPhys.35.1.
  3. ^ a b c d e f g h i j k l m n o p q r s Julian Eisenstein, Superconducting Elements in Reviews of Modern Physics, vol. 26, 1954, p. 277, DOI:10.1103/RevModPhys.26.277.
  4. ^ a b c d Efthimios Kaxiras, Atomic and electronic structure of solids, Cambridge University Press, 2003, p. 283, ISBN 0-521-52339-7.
  5. ^ a b c d R. D. Fowler et al., Superconductivity of Protactinium in Phys. Rev. Lett., vol. 15, 1965, p. 860, DOI:10.1103/PhysRevLett.15.860.
  6. ^ J. Daunt, Smith T., Superconductivity of Rhenium in Physical Review, vol. 88, 1952, p. 309, DOI:10.1103/PhysRev.88.309.
  7. ^ Takeshi Rachi, Kumashiro Ryotaro, Fukuoka Hiroshi, Yamanaka Shoji, Tanigaki Katsumi, Sp3-network superconductors made from IVth-group elements in Science and Technology of Advanced Materials, vol. 7, 2006, pp. S88, DOI:10.1016/j.stam.2006.02.012.
  8. ^ a b c d e f g Nicolas Emery, Hérold Claire, Marêché Jean-François, Lagrange Philippe, Synthesis and superconducting properties of CaC6 in Science and Technology of Advanced Materials, vol. 9, 2008, p. 044102, DOI:10.1088/1468-6996/9/4/044102.
  9. ^ a b c d e f I.T Belash et al., Superconductivity of GIC with Li, Na and K in Synthetic Metals, vol. 34, 1990, p. 455, DOI:10.1016/0379-6779(89)90424-4.
  10. ^ K. Tanigaki T. W. Ebbesen S. Saito J. Mizuki J. S. Tsai Y. Kubo & S. Kuroshima, Superconductivity at 33 K in CsxRbyC60 in Nature, vol. 352, 1991, pp. 222–223, DOI:10.1038/352222a0.
  11. ^ X. -D. Xiang, Hou J. G., Briceno G., Vareka W. A., Mostovoy R., Zettl A., Crespi V. H., Cohen M. L., Synthesis and Electronic Transport of Single Crystal K3C60 in Science, vol. 256, nº 5060, 1992, p. 1190, DOI:10.1126/science.256.5060.1190, PMID 17795215.
  12. ^ Takeshi Rachi, Kumashiro Ryotaro, Fukuoka Hiroshi, Yamanaka Shoji, Tanigaki Katsumi, Sp3-network superconductors made from IVth-group elements in Science and Technology of Advanced Materials, vol. 7, 2006, pp. S88, DOI:10.1016/j.stam.2006.02.012.
  13. ^ M. Rosseinsky, Ramirez A., Glarum S., Murphy D., Haddon R., Hebard A., Palstra T., Kortan A., Zahurak S., Superconductivity at 28 K in Rb_{x}C_{60} in Physical Review Letters, vol. 66, 1991, p. 2830, DOI:10.1103/PhysRevLett.66.2830.
  14. ^ E. Ekimov et al. "Superconductivity in diamond" Nature 428 (2004) 542 (free download)
  15. ^ Evgeny A, Sidorov Vladimir A, Zoteev Andrey V, Lebed Yury B, Thompson Joe D, Stishov Sergey M Ekimov, Structure and superconductivity of isotope-enriched boron-doped diamond in Science and Technology of Advanced Materials, vol. 9, 2008, p. 044210, DOI:10.1088/1468-6996/9/4/044210.
  16. ^ Y, Takenouchi T, Ishii S, Ueda S, Okutsu T, Sakaguchi I, Umezawa H, Kawarada H, Tachiki M Takano, Superconducting properties of homoepitaxial CVD diamond in Diamond and Related Materials, vol. 16, 2007, p. 911, DOI:10.1016/j.diamond.2007.01.027.
  17. ^ Takashi Inushima, Electronic structure of superconducting InN in Science and Technology of Advanced Materials, vol. 7, 2006, pp. S112, DOI:10.1016/j.stam.2006.05.009.
  18. ^ Kazumasa Makise, Kokubo Nobuhito, Takada Satoshi, Yamaguti Takashi, Ogura Syunsuke, Yamada Kazumasa, Shinozaki Bunjyu, Yano Koki, Inoue Kazuyoshi, Superconductivity in transparent zinc-doped In2O3films having low carrier density in Science and Technology of Advanced Materials, vol. 9, 2008, p. 044208, DOI:10.1088/1468-6996/9/4/044208.
  19. ^ E. Bustarret et al. Nature 444 (2006) 465
  20. ^ a b Takahiro Muranaka, Kikuchi Yoshitake, Yoshizawa Taku, Shirakawa Naoki, Akimitsu Jun, Superconductivity in carrier-doped silicon carbide in Science and Technology of Advanced Materials, vol. 9, 2008, p. 044204, DOI:10.1088/1468-6996/9/4/044204.
  21. ^ G. Schell, H. Winter, H. Rietschel, and F. Gompf, Electronic structure and superconductivity in metal hexaborides in Phys. Rev. B, vol. 25, 1982, p. 1589, DOI:10.1103/PhysRevB.25.1589.
  22. ^ Jun Nagamatsu, Nakagawa Norimasa, Muranaka Takahiro, Zenitani Yuji, Akimitsu Jun, Superconductivity at 39 K in magnesium diboride. in Nature, vol. 410, nº 6824, 2001, p. 63, DOI:10.1038/35065039, PMID 11242039.
  23. ^ Gin-ichiro Oya, E. J. Saur, Preparation of Nb3Ge films by chemical transport reaction and their critical properties in Journal of Low Temperature Physics, vol. 34, 5–6, 1979, pp. 569–583, DOI:10.1007/BF00114941.
  24. ^ J. K., Jones C. K., Hein R. A., Gibson J. W. Hulm, Superconductivity in the TiO and NbO systems in Journal of Low Temperature Physics, vol. 7, 1972, p. 291, DOI:10.1007/BF00660068.
  25. ^ B. T. Matthias, Geballe, T. H.; Geller, S.; Corenzwit, E., Superconductivity of Nb3Sn in Physical Review, vol. 95, 1954, pp. 1435–1435, DOI:10.1103/PhysRev.95.1435.
  26. ^ Z. Fisk et al., Growth of YB6 single crystals in Mater. Res. Bull., vol. 11, 1976, p. 1019, DOI:10.1016/0025-5408(76)90179-3.
  27. ^ P. Szabo et al., Superconducting energy gap of YB6 studied by point-contact spectroscopy in Physica C, 460-462, 2007, p. 626, DOI:10.1016/j.physc.2007.04.135.
  28. ^ a b M. I. Tsindlekht et al., Linear and nonlinear low-frequency electrodynamics of surface superconducting states in an yttrium hexaboride single crystal in Phys. Rev. B, vol. 78, 2008, p. 024522, DOI:10.1103/PhysRevB.78.024522.
  29. ^ Hugh O. Pierson, Handbook of refractory carbides and nitrides: properties, characteristics, processing, and applications, William Andrew, 1996, p. 193, ISBN 0-8155-1392-5.
  30. ^ Lengauer, Walter, Characterization of nitrogen distribution profiles in fcc transition metal nitrides by means ofTc measurements in Surface and Interface Analysis, vol. 15, 1990, p. 377, DOI:10.1002/sia.740150606.
  31. ^ a b c d K. Ishida et al, To What Extent Iron-Pnictide New Superconductors Have Been Clarified: A Progress Report in J. Phys. Soc. Jpn., vol. 78, 2009, p. 062001, DOI:10.1143/JPSJ.78.062001.
  32. ^ Shirage, Parasharam M., Superconductivity at 43 K at ambient pressure in the iron-based layered compound La1-xYxFeAsOy in Physical Review B, vol. 78, 2008, p. 172503, Bibcode:2008PhRvB..78q2503S, DOI:10.1103/PhysRevB.78.172503.
  33. ^ Ren, Z. A., Superconductivity at 52 K in iron based F doped layered quaternary compound Pr[O1–xFx]FeAs in Materials Research Innovations, vol. 12, 2008, p. 105, DOI:10.1179/143307508X333686.
  34. ^ Yang, Jie, Superconductivity at 53.5 K in GdFeAsO1-d in Superconductor Science and Technology, vol. 21, 2008, p. 082001, DOI:10.1088/0953-2048/21/8/082001.
  35. ^ Ren, Zhi-An, "Superconductivity and phase diagram in iron-based arsenic-oxides ReFeAsO1-d (Re = rare-earth metal) without fluorine doping in EPL (Europhysics Letters), vol. 83, 2008, p. 17002, DOI:10.1209/0295-5075/83/17002.