Power over Ethernet

Da Wikipedia, l'enciclopedia libera.
Jump to navigation Jump to search
Un Access Point alimentato con PoE attraverso il modulo esterno

Power over Ethernet o PoE (suo acronimo) è una tecnica che permette di alimentare apparecchiature utilizzando lo stesso cavo che le collega alla rete dati Ethernet.

È molto utile allorché vi siano difficoltà nel reperimento di fonti elettriche in prossimità della terminazione o anche per ridurre il numero di elementi e cavi; ad esempio, un telefono IP su una scrivania può essere alimentato direttamente dal cavo di rete ethernet in Power over Ethernet, eliminando l'alimentatore e il relativo cavo e rendendo l'installazione più semplice e pulita.

Per il momento queste tecniche sono utilizzate soprattutto nell'alimentazione di apparecchiature che richiedono poca potenza, nell’ordine di poche decine di watt, come telecamere industriali, telefoni VoIP, access point e webcam.

Se l'hardware di rete prevede apparecchiature di smistamento o concentrazione, l'alimentazione dovrà passare anche attraverso queste per alimentarle e/o per alimentare i terminali.

Lo IEEE ha definito le regole per PoE con la norma denominata IEEE 802.3af e, successivamente, 802.3at.

Principio di funzionamento[modifica | modifica wikitesto]

Il principio di funzionamento base è molto semplice, anche se le problematiche da affrontare per la trasmissione di alimentazione su una linea dati sono più di una: si tratta di adattare l'alimentazione secondo le specifiche del cavo utilizzato e lasciare all'apparecchiatura utilizzatrice il compito di riadattarle secondo le proprie necessità.

Le problematiche principali sono le seguenti:

  • una linea dati sicuramente non è congeniale alla trasmissione di forti correnti, anzi spesso per la velocità si sfrutta l'effetto pelle; per questo l'energia viene trasportata con tensioni elevate, senza superare però i limiti degli isolamenti;
  • in secondo luogo, anche se si preferisce non superare la distanza di 100 m per questo tipo di trasporto, vi sono sempre problemi come interferenze e cadute di tensione; per questo spesso non si usa la corrente continua e si dota ogni terminale dell'elettronica che filtra, raddrizza, regola e stabilizza, secondo le proprie esigenze, l'alimentazione in arrivo.

IEEE 802.3af[modifica | modifica wikitesto]

Il PD è l'apparecchiatura collegata alla rete che fornisce un servizio finale: è detta anche terminale o utilizzatore; il PD necessita di un'alimentazione per il funzionamento, alimentazione che può essere fornita nei pressi dell'installazione tramite un alimentatore diretto o in remoto attraverso la stessa linea di trasmissione dati.

Il PSE o alimentatore è l'apparecchiatura che fornisce la corrente e la tensione adatte al funzionamento del PD. Spesso il PSE deve prendere decisioni e in tal caso può essere relativamente complicato e prevedere addirittura una logica a microprocessore. Il PSE può essere integrato nelle apparecchiature che distribuiscono le linee dati Collegamento Endpoint o può essere inserito nella linea stessa tramite un iniettore Collegamento Midspan.

Seguendo le indicazioni della norma IEEE 802.3, il PD in PoE può essere rappresentato dallo schema a blocchi qui sotto.[1]

PoweredDevice.gif

Protezione inversione polarità[modifica | modifica wikitesto]

Il primo blocco si rende necessario per evitare che un cavo ethernet incrociato oppure cablato male danneggi i dispositivi collegati o comprometta il funzionamento del sistema.[2]

Le indicazioni della norma per questo blocco sono semplici: il PD deve poter operare correttamente anche con polarità invertita. Generalmente il primo blocco è costituito da un semplice raddrizzatore a ponte.

Secondo blocco[modifica | modifica wikitesto]

Il PD deve inoltre lavorare agevolmente nell'intervallo di tensione da 21 V a 48 V e contemporaneamente il sistema deve essere compatibile anche con le apparecchiature costruite per la sola alimentazione 24 V; cioè l'alta tensione (48V) non deve essere applicata a chi non la sopporta. Esistono quindi due situazioni: la prima consiste nel fornire un'alimentazione fissa di 24 V che per caduta di tensione sul cavo può scendere anche a 21 V; la seconda, in cui vengono valutate la tensione e la corrente come descritto nel seguito.

Per questa valutazione è stato introdotto il secondo blocco, composto da due elementi: una resistenza di riferimento da 25 kΩ (130 mW@57 V) e un generatore di corrente costante che in questo caso prende il nome di circuito di classificazione. L'alimentatore compatibile 802.3af alla sua accensione controlla che il cavo di uscita sia collegato e poi applica inizialmente una tensione compresa tra 2,7 V e 10,1 V e misura la resistenza da 25 kΩ che dovrebbe trovarsi al di là del cavo e al di là del raddrizzatore a ponte. Se la resistenza di riferimento non viene trovata considera l'utilizzatore non compatibile 802.3af e imposta la sua tensione di uscita a 24 V; se invece la lettura è positiva inizia la seconda fase in cui viene fornita una tensione compresa tra 14,5 V e 20,5 V, nel PD entra in funzione il circuito di classificazione, l'alimentatore misura la corrente erogata e in base a questa classifica l'utilizzatore secondo la seguente tabella:

Classe Corrente misurata (mA) Range potenza utilizzatore (W) Note
0 da 0 a 4 da 0,44 a 12,95 standard
1 da 9 a 12 da 0,44 a 3,84 opzione1
2 da 17 a 20 da 3,84 a 6,49 opzione2
3 da 26 a 30 da 6,49 a 12,95 opzione3
4 da 36 a 44 riservato uso futuro

Terzo blocco[modifica | modifica wikitesto]

Il terzo blocco è stato introdotto per far operare l'utilizzatore solo a tensioni superiori ai 35V, dopo la fase di classificazione l'alimentatore fornirà 48 V e quindi l'utilizzatore funzionerà correttamente anche con una caduta di tensione sul cavo di (48-35) V=13 V. Nelle specifiche 802.3af non è indicata una soglia per lo spegnimento che potrebbe avvenire quando la tensione entra nell'intervallo tra 30 V e 35 V, innalzando ulteriormente la tolleranza alla caduta di tensione. Per completezza nei calcoli teorici la norma considera generalmente un valore di 20 ohm di resistenza equivalente somma del contributo del cavo e delle connessioni.

Quarto blocco[modifica | modifica wikitesto]

Infine il quarto blocco regola la tensione a seconda delle necessità dell'utilizzatore, infatti le tipiche alimentazioni sono 12 V, 5 V e oggi anche 3,3 V. Questo blocco deve regolare la tensione in uscita funzionando correttamente alla corrente massima prevista nell'intervallo di tensionie di ingresso tra i 21 V e 57 V.

Per quanto riguarda la potenza finale, secondo le specifiche 802.3af con una potenza di carico di 12,95 W (350 mA a 37 V) e considerando un rendimento dell'80% del convertitore DC/DC non è possibile fornire all'utilizzatore una potenza superiore a 10,36 W.

Connessioni[modifica | modifica wikitesto]

PowerOverEthernetScheminoEsempioAlimentatore.gif

Nella connessione Ethernet il cavo generalmente utilizzato contiene quattro coppie collegate al connettore RJ-45; nelle reti a 10 Mbit/s e 100 Mbit/s sono utilizzate solo due delle coppie per la trasmissione dati, la prima collegata ai pin 1 e 2, la seconda ai pin 3 e 6; nelle reti a 1 Gbit/s tutte le coppie sono usate per la trasmissione dati. Quindi nelle reti a 10 Mbit e a 100 Mbit sono quindi possibili tre tipi di connessione:

  • nel primo si utilizzano le coppie a disposizione, quelle non utilizzate per la trasmissione dati, secondo lo schema definito dalle 802.3 Midspan PSE, in questa alternativa l'alimentazione è fornita in una interruzione del cavo;
  • nel secondo si utilizzano sempre le coppie a disposizione, secondo lo schema definito dalle 802.3 Endpoint PSE - alternativa B, in questa alternativa è il dispositivo di distribuzione switch che fornisce l'alimentazione;
  • nel terzo si utilizzano le stesse linee dati, questo tipo di iniezione può essere effettuata esclusivamente dal dispositivo di distribuzione switch e deve essere opportunamente predisposto poiché come si vede nello schema definito dalle 802.3 Endpoint PSE - alternativa A il collegamento avviene attraverso la presa centrale del trasformatore d'impulsi.

Questa ultima alternativa è ovviamente l'unica possibile per le reti 1 Gbit che utilizzano tutte le coppie per la trasmissione dei dati.

Nello schema sembra che entrambi i conduttori della coppia siano cortocircuitati, invece in tutti i casi citati in precedenza nel PSE ogni conduttore è collegato a un piccolo alimentatore parallelabile (parallelato nel PD). Questo significa che la corrente totale viene erogata in parti uguali su ogni conduttore o su ogni coppia nel caso di iniezione sulla linea dati.

Schemi[modifica | modifica wikitesto]

Note[modifica | modifica wikitesto]

Voci correlate[modifica | modifica wikitesto]

Collegamenti esterni[modifica | modifica wikitesto]

Telematica Portale Telematica: accedi alle voci di Wikipedia che parlano di reti, telecomunicazioni e protocolli di rete