Accelerazione: differenze tra le versioni

Da Wikipedia, l'enciclopedia libera.
Vai alla navigazione Vai alla ricerca
Contenuto cancellato Contenuto aggiunto
Morry39 (discussione | contributi)
Annullata la modifica 85081894 di 151.68.51.81 (discussione)
Riga 74: Riga 74:
Nello studio del [[campo gravitazionale terrestre]], per un corpo in [[caduta libera]], trascurando la [[resistenza fluidodinamica]] dell'aria, si ha:
Nello studio del [[campo gravitazionale terrestre]], per un corpo in [[caduta libera]], trascurando la [[resistenza fluidodinamica]] dell'aria, si ha:


\[
''a = g''
a = g
\]


dove g è l'[[accelerazione di gravità]], pari a circa 9,81 m/s².
dove g è l'[[accelerazione di gravità]], pari a circa 9,81 m/s².

Versione delle 21:37, 27 feb 2017

In fisica, l'accelerazione è una grandezza vettoriale che rappresenta la variazione della velocità nell'unità di tempo. In termini differenziali, è pari alla derivata rispetto al tempo del vettore velocità.[1] Le derivate temporali di ordine superiore al primo della velocità vengono studiate nel moto vario.

Nel SI l'unità di misura del modulo dell'accelerazione è il m/s², ovvero metro al secondo quadrato.

Definizione

L'accelerazione di un punto materiale è la variazione (in modulo e/o direzione e/o orientamento) della sua velocità rispetto al tempo. Il modo più immediato per quantificare tale variazione consiste nel definire l'accelerazione media come il rapporto tra la variazione di velocità al tempo finale e iniziale posseduta dall'oggetto, e l'intervallo finito di tempo di durata del moto:[2]

Un modo preciso per caratterizzare l'accelerazione si ottiene considerando la velocità in ogni istante di tempo, ovvero esprimendo la velocità in funzione del tempo e, ove la funzione è continua, calcolandone la derivata. Si definisce in questo modo l'accelerazione istantanea:

Si tratta del limite per l'intervallo di tempo tendente a zero del rapporto incrementale che definisce l'accelerazione media:

L'accelerazione media coincide con l'accelerazione istantanea quando quest'ultima è costante nel tempo (), e si parla in tal caso di moto uniformemente accelerato.

Nel moto del punto materiale su di una curva, il vettore accelerazione in un punto è orientato verso la concavità della traiettoria in quel punto. Può succedere che durante il moto il vettore velocità cambi soltanto in direzione e verso, restando costante in modulo, come ad esempio nel caso di moto circolare uniforme. La componente del vettore accelerazione nella direzione del moto è in questo caso nulla, e il vettore è quindi radiale (perpendicolare alla traiettoria). Data una traiettoria curvilinea arbitraria e continua, per individuare la direzione ed il verso dell'accelerazione di un oggetto che la percorre si utilizza il metodo del cerchio osculatore.

In un contesto più formale, sia la lunghezza di un arco della curva percorsa dall'oggetto in moto. Se è lo spostamento dell'oggetto nel tempo , la norma della velocità istantanea nel punto è la derivata dello spostamento rispetto al tempo:[3]

con il vettore velocità che è quindi scritto come:

dove è il vettore unitario tangente alla curva. Il modulo dell'accelerazione istantanea è allora:

ed il vettore accelerazione è dato da:[3]

dove è la curvatura e si sono evidenziate la componente in direzione del moto e la componente in direzione perpendicolare, con vettore unitario normale alla curva. In generale è possibile introdurre una terna di versori ortonormali, detta triedro di Frenet, costituita ortogonalizzando i vettori velocità, accelerazione ed un terzo vettore, generato dal prodotto vettoriale dei primi due. I versori così generati prendono il nome di versore tangente, normale e binormale. L'accelerazione giace sempre, per costruzione, nel piano individuato dal versore tangente e da quello normale. La geometria differenziale sfrutta il triedro di Frenet per permettere di calcolare in ogni punto la curvatura e la torsione della traiettoria.

In alto: rappresentazione della velocità (variabile dipendente) in funzione del tempo (variabile indipendente). L'accelerazione, definita come la derivata della velocità rispetto al tempo, ha un valore pari alla pendenza della retta tangente, mostrata in blu nella figura.
In basso: andamento della derivata, che rappresenta il valore dell'accelerazione in funzione del tempo.

Accelerazione tangenziale e normale

Componente centripeta e tangenziale dell'accelerazione
Lo stesso argomento in dettaglio: Accelerazione centripeta.

In uno spazio a tre dimensioni si può scrivere l'accelerazione come:

dove , e sono i versori del sistema di riferimento utilizzato. Data una traiettoria qualsiasi, è anche sempre possibile scomporre l'accelerazione del corpo in una componente ad essa tangente, detta accelerazione tangenziale, e in una componente perpendicolare, detta accelerazione centripeta:

Considerando la derivata del vettore velocità , si ha:

dove denota il prodotto vettoriale e , con raggio di curvatura della traiettoria nel punto considerato.

L'accelerazione tangenziale descrive il cambiamento in norma della velocità, mentre quella normale è associata alla variazione della direzione della velocità.[4] Identificando i termini si ha, infatti, che le componenti sono:

Mentre in due dimensioni il versore normale è univocamente determinato, in tre dimensioni bisogna specificarlo: esso è parallelo al raggio del cerchio che meglio approssima la traiettoria in quel punto, il cerchio osculatore. Da quanto mostrato segue inoltre che se la componente normale dell'accelerazione è nulla, allora il moto si svolge su una retta: infatti la direzione del vettore velocità è costante, e dato che la velocità è sempre tangente alla traiettoria, quest'ultima è rettilinea. Talvolta si verifica che anche la componente tangenziale dell'accelerazione sia nulla: il vettore velocità è allora costante e si ha un moto rettilineo uniforme. Se invece l'accelerazione tangenziale è costante si ha un moto rettilineo uniformemente accelerato.

Significato geometrico

Il segno dell'accelerazione istantanea può essere interpretato come la concavità del grafico spazio-tempo del moto.

L'accelerazione media si rappresenta con il grafico velocità-tempo, dal quale si comprende come l'accelerazione media sia uguale alla pendenza della retta che congiunge i punti iniziale e finale del grafico velocità-tempo in cui andiamo a calcolare la media.

L'accelerazione istantanea è la tangente alla curva velocità-tempo nel punto fissato, così come è il significato geometrico della derivata prima. Essa è quindi uguale alla pendenza della retta tangente alla curva nel punto in cui viene calcolata.

Attraverso lo studio della curva nel grafico velocità-tempo si possono ricavare ulteriori importanti informazioni: dall'angolo che la tangente forma con l'asse del tempo si evince che l'accelerazione è negativa se la tangente forma un angolo superiore ai 90 gradi con l'asse delle ascisse, è positiva se rimane sotto i 90 gradi mentre è nulla se la tangente è parallela all'asse. Inoltre, si noti come a valori positivi della curva accelerazione-tempo corrispondano valori crescenti della curva velocità-tempo. Poiché l'accelerazione è la derivata seconda della posizione, si può anche ricavare l'andamento della relazione accelerazione-tempo anche studiando la concavità del grafico.

Accelerazione di gravità

Nello studio del campo gravitazionale terrestre, per un corpo in caduta libera, trascurando la resistenza fluidodinamica dell'aria, si ha:

\[ a = g \]

dove g è l'accelerazione di gravità, pari a circa 9,81 m/s².

Questo valore dunque è il modulo dell'accelerazione di gravità terrestre (direzione verticale, orientamento verso il centro della Terra); esso permette di determinare la velocità tramite un'operazione di integrazione; il modulo della velocità è proporzionale all'accelerazione a meno di una costante iniziale.

Note

  1. ^ (EN) IUPAC Gold Book, "acceleration, a".
  2. ^ McGraw-Hill Concise Encyclopedia of Science and Technology.
  3. ^ a b Weisstein, Eric W. Acceleration. From MathWorld.
  4. ^ Infatti, la forza associata alla componente normale dell'accelerazione non compie lavoro sull'oggetto, essendo nullo il prodotto scalare della forza con lo spostamento.

Bibliografia

Voci correlate

Altri progetti

Collegamenti esterni

  Portale Meccanica: accedi alle voci di Wikipedia che trattano di Meccanica