Multiinsieme

Da Wikipedia, l'enciclopedia libera.

In matematica, e più in particolare nella combinatoria, nella logica matematica e nella teoria degli insiemi, un multiinsieme è una generalizzazione del concetto basilare di insieme. Un multiinsieme potrebbe definirsi con un elenco che ammette componenti ripetuti: si potrebbe ad esempio presentare un multiinsieme con un elenco come . Una tale collezione, infatti, non corrisponde alla concezione prevalente di insieme come collezione di elementi tutti distinti tra loro. Ma nella definizione di multiinsieme, a differenza di quello che accade per un elenco o una lista, non è rilevante l'ordine in cui compaiono gli elementi.

Formalmente, un multiinsieme è definito come una coppia , dove è un insieme e è una funzione a valori naturali positivi; A viene detto insieme sostegno del multiinsieme, i suoi elementi si dicono elementi del multiinsieme ed m molteplicità del multiinsieme. Si può dire che la funzione molteplicità associa ad ogni elemento del multiinsieme un numero di ripetizioni che costituiscono il multiinsieme stesso; per esempio nel caso sopra menzionato si ha:

  • = 3
  • = 2
  • = 1

Si osservi che la sola funzione molteplicità individua completamente un multiinsieme: in effetti la nozione può ridursi a quella di funzione a valori interi positivi e per un generico multiinsieme, ricorrendo alla nozione di dominio, si può scrivere .

La somma dei numeri di ripetizioni esprime il numero delle coppie costituenti la funzione m e quindi viene detta cardinalità del multinsieme.

Risulta utile servirsi dei termini e delle notazioni dei multiinsiemi per ragioni di pratica espositiva, come accade per i due primi esempi del paragrafo che segue e in varie questioni enumerative nella combinatoria e nella teoria dei gruppi.

Da quanto detto si evince in modo esplicito che se l'insieme immagine di (ossia l'insieme dei valori assunti da ) coincide con l'insieme , allora il multiinsieme si può confondere con il suo insieme sostegno.

Naturalmente, dato che ogni funzione si può presentare come insieme di coppie, ogni multi-insieme può essere presentato come l'insieme delle coppie ordinate ; nell'esempio iniziale: .

Il numero dei multinsiemi di cardinalità di un insieme di cardinalità è dato dal coefficiente binomiale ; è quindi uguale al numero delle composizioni di in parti.

Se si specifica un universo di cui sia sottoinsieme, la definizione di funzione molteplicità diviene , da all'insieme ; in tal caso, la molteplicità degli elementi di non appartenenti ad è nulla.

Il numero di tali multinsiemi di cardinalità di un insieme di cardinalità viene detto, nella terminologia combinatoria classica, numero delle combinazioni con ripetizione di oggetti di classe .

La funzione molteplicità generalizza la funzione indicatrice di un insieme, quest'ultima essendo vincolata ad assumere solo i valori 0 o 1.

Esempi[modifica | modifica wikitesto]

La nozione di multiinsieme serve per individuare con chiarezza la collezione dei fattori primi di un dato numero naturale. Se per esempio si osserva che , si può affermare che il multiinsieme dei fattori primi di 720 è . Un altro esempio è dato dalle radici di un polinomio; ad esempio le radici del polinomio costituiscono il multiinsieme .

Si osservi che nei due esempi precedenti, parlando di multiinsiemi si hanno enunciati piuttosto chiari e si evitano discorsi nei quali si usa a sproposito il termine insieme.

Nella pratica spesso un multiinsieme viene efficacemente individuato con una notazione esponenziale che si richiama alla fattorizzazione degli interi: per l'esempio del polinomio si potrebbe scrivere . Anche per questa notazione si conviene di evitare di scrivere gli esponenti uguali a 1. Talora un multiinsieme viene presentato con un istogramma formato da colonne di quadratini uguali sovrapposti.

Si potrebbero trattare anche multiinsiemi aventi come sostegno un insieme infinito: in effetti una successione di interi (come la successione di Fibonacci o la successione dei numeri di Catalan) potrebbe considerarsi un multiinsieme. Di solito però si considerano solo multiinsiemi con sostegno finito.

Voci correlate[modifica | modifica wikitesto]

Matematica Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica