Mdm2: differenze tra le versioni

Da Wikipedia, l'enciclopedia libera.
Vai alla navigazione Vai alla ricerca
Contenuto cancellato Contenuto aggiunto
mNessun oggetto della modifica
Nessun oggetto della modifica
Riga 7: Riga 7:


Mdm2 interagisce con le seguenti proteine:
Mdm2 interagisce con le seguenti proteine:
{{Div col|colwidth=10em}}
{{Div col|colwidth=8em}}
* [[ABL1]]<ref>{{Cita pubblicazione|nome=Zehavit|cognome=Goldberg|data=2002-07-15|titolo=Tyrosine phosphorylation of Mdm2 by c-Abl: implications for p53 regulation|rivista=The EMBO journal|volume=21|numero=14|pp=3715–3727|accesso=2018-04-16|doi=10.1093/emboj/cdf384|url=https://www.ncbi.nlm.nih.gov/pubmed/12110584|nome2=Ronit|cognome2=Vogt Sionov|nome3=Michael|cognome3=Berger}}</ref>
* [[Abl gene|ABL1]],<ref name="pmid12110584">{{cite journal | vauthors = Goldberg Z, Vogt Sionov R, Berger M, Zwang Y, Perets R, Van Etten RA, Oren M, Taya Y, Haupt Y | title = Tyrosine phosphorylation of Mdm2 by c-Abl: implications for p53 regulation | journal = The EMBO Journal | volume = 21 | issue = 14 | pages = 3715–27 | date = July 2002 | pmid = 12110584 | pmc = 125401 | doi = 10.1093/emboj/cdf384 }}</ref>
* [[Arrestin beta 1|ARRB1]],<ref name=pmid12538596/><ref name=pmid18544533/>
* [[ARRB1]]
* [[Arrestin beta 2|ARRB2]],<ref name="pmid12538596">{{cite journal | vauthors = Wang P, Wu Y, Ge X, Ma L, Pei G | title = Subcellular localization of beta-arrestins is determined by their intact N domain and the nuclear export signal at the C terminus | journal = The Journal of Biological Chemistry | volume = 278 | issue = 13 | pages = 11648–53 | date = March 2003 | pmid = 12538596 | doi = 10.1074/jbc.M208109200 }}</ref><ref name="pmid18544533">{{cite journal | vauthors = Shenoy SK, Xiao K, Venkataramanan V, Snyder PM, Freedman NJ, Weissman AM | title = Nedd4 mediates agonist-dependent ubiquitination, lysosomal targeting, and degradation of the beta2-adrenergic receptor | journal = The Journal of Biological Chemistry | volume = 283 | issue = 32 | pages = 22166–76 | date = August 2008 | pmid = 18544533 | pmc = 2494938 | doi = 10.1074/jbc.M709668200 }}</ref><ref name="pmid12488444">{{cite journal | vauthors = Wang P, Gao H, Ni Y, Wang B, Wu Y, Ji L, Qin L, Ma L, Pei G | title = Beta-arrestin 2 functions as a G-protein-coupled receptor-activated regulator of oncoprotein Mdm2 | journal = The Journal of Biological Chemistry | volume = 278 | issue = 8 | pages = 6363–70 | date = February 2003 | pmid = 12488444 | doi = 10.1074/jbc.M210350200 }}</ref>
* [[ARRB2]]
* [[CCNG1]],<ref name="pmid12556559">{{cite journal | vauthors = Zhao L, Samuels T, Winckler S, Korgaonkar C, Tompkins V, Horne MC, Quelle DE | title = Cyclin G1 has growth inhibitory activity linked to the ARF-Mdm2-p53 and pRb tumor suppressor pathways | journal = Molecular Cancer Research | volume = 1 | issue = 3 | pages = 195–206 | date = January 2003 | pmid = 12556559 | doi = }}</ref>
* [[CCNG1]]
* [[CTBP1]],<ref name=pmid12867035/>
* [[CTBP2]]
* [[CTBP2]],<ref name="pmid12867035">{{cite journal | vauthors = Mirnezami AH, Campbell SJ, Darley M, Primrose JN, Johnson PW, Blaydes JP | title = Hdm2 recruits a hypoxia-sensitive corepressor to negatively regulate p53-dependent transcription | journal = Current Biology | volume = 13 | issue = 14 | pages = 1234–9 | date = July 2003 | pmid = 12867035 | doi = 10.1016/S0960-9822(03)00454-8 }}</ref>
* [[Daxx]]
* [[Death associated protein 6|DAXX]],<ref name="pmid18583933">{{cite journal | vauthors = Ivanchuk SM, Mondal S, Rutka JT | title = p14ARF interacts with DAXX: effects on HDM2 and p53 | journal = Cell Cycle | volume = 7 | issue = 12 | pages = 1836–50 | date = June 2008 | pmid = 18583933 | doi = 10.4161/cc.7.12.6025 }}</ref>
* [[DHFR]]
* [[Dihydrofolate reductase|DHFR]],<ref name="pmid18451149">{{cite journal | vauthors = Maguire M, Nield PC, Devling T, Jenkins RE, Park BK, Polański R, Vlatković N, Boyd MT | title = MDM2 regulates dihydrofolate reductase activity through monoubiquitination | journal = Cancer Research | volume = 68 | issue = 9 | pages = 3232–42 | date = May 2008 | pmid = 18451149 | pmc = 3536468 | doi = 10.1158/0008-5472.CAN-07-5271 }}</ref>
* [[EP300]]
* [[EP300]],<ref name="pmid9809062">{{cite journal | vauthors = Grossman SR, Perez M, Kung AL, Joseph M, Mansur C, Xiao ZX, Kumar S, Howley PM, Livingston DM | title = p300/MDM2 complexes participate in MDM2-mediated p53 degradation | journal = Molecular Cell | volume = 2 | issue = 4 | pages = 405–15 | date = October 1998 | pmid = 9809062 | doi = 10.1016/S1097-2765(00)80140-9 }}</ref>
* [[C1orf173]]
* [[C1orf173|ERICH3]],<ref>{{cite journal | vauthors = Miyamoto-Sato E, Fujimori S, Ishizaka M, Hirai N, Masuoka K, Saito R, Ozawa Y, Hino K, Washio T, Tomita M, Yamashita T, Oshikubo T, Akasaka H, Sugiyama J, Matsumoto Y, Yanagawa H | title = A comprehensive resource of interacting protein regions for refining human transcription factor networks | journal = PLoS One | volume = 5 | issue = 2 | pages = e9289 | date = Feb 2010 | pmid = 20195357 | pmc = 2827538 | doi = 10.1371/journal.pone.0009289 }}</ref>
* [[FKBP3]]
* [[FKBP3]],<ref name="pmid19166840">{{cite journal | vauthors = Ochocka AM, Kampanis P, Nicol S, Allende-Vega N, Cox M, Marcar L, Milne D, Fuller-Pace F, Meek D | title = FKBP25, a novel regulator of the p53 pathway, induces the degradation of MDM2 and activation of p53 | journal = FEBS Letters | volume = 583 | issue = 4 | pages = 621–6 | date = February 2009 | pmid = 19166840 | doi = 10.1016/j.febslet.2009.01.009 }}</ref>
* [[FOXO4]]
* [[FOXO4]],<ref name="pmid18665269">{{cite journal | vauthors = Brenkman AB, de Keizer PL, van den Broek NJ, Jochemsen AG, Burgering BM | title = Mdm2 induces mono-ubiquitination of FOXO4 | journal = PLoS One | volume = 3 | issue = 7 | pages = e2819 | year = 2008 | pmid = 18665269 | pmc = 2475507 | doi = 10.1371/journal.pone.0002819 }}</ref>
* [[GNL3]]
* [[GNL3]],<ref name="pmid18426907">{{cite journal | vauthors = Dai MS, Sun XX, Lu H | title = Aberrant expression of nucleostemin activates p53 and induces cell cycle arrest via inhibition of MDM2 | journal = Molecular and Cellular Biology | volume = 28 | issue = 13 | pages = 4365–76 | date = July 2008 | pmid = 18426907 | pmc = 2447154 | doi = 10.1128/MCB.01662-07 }}</ref>
* [[HDAC1]]
* [[HDAC1]],<ref name="pmid12426395">{{cite journal | vauthors = Ito A, Kawaguchi Y, Lai CH, Kovacs JJ, Higashimoto Y, Appella E, Yao TP | title = MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation | journal = The EMBO Journal | volume = 21 | issue = 22 | pages = 6236–45 | date = November 2002 | pmid = 12426395 | pmc = 137207 | doi = 10.1093/emboj/cdf616 }}</ref>
* [[HIF1A]]
* [[HIF1A]],<ref name="pmid12606552">{{cite journal | vauthors = Chen D, Li M, Luo J, Gu W | title = Direct interactions between HIF-1 alpha and Mdm2 modulate p53 function | journal = The Journal of Biological Chemistry | volume = 278 | issue = 16 | pages = 13595–8 | date = April 2003 | pmid = 12606552 | doi = 10.1074/jbc.C200694200 }}</ref><ref name="pmid10640274">{{cite journal | vauthors = Ravi R, Mookerjee B, Bhujwalla ZM, Sutter CH, Artemov D, Zeng Q, Dillehay LE, Madan A, Semenza GL, Bedi A | title = Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha | journal = Genes & Development | volume = 14 | issue = 1 | pages = 34–44 | date = January 2000 | pmid = 10640274 | pmc = 316350 | doi = 10.1101/gad.14.1.34 }}</ref>
* [[KAT5]]
* [[HTATIP]],<ref name="pmid11927554">{{cite journal | vauthors = Legube G, Linares LK, Lemercier C, Scheffner M, Khochbin S, Trouche D | title = Tip60 is targeted to proteasome-mediated degradation by Mdm2 and accumulates after UV irradiation | journal = The EMBO Journal | volume = 21 | issue = 7 | pages = 1704–12 | date = April 2002 | pmid = 11927554 | pmc = 125958 | doi = 10.1093/emboj/21.7.1704 }}</ref>
* [[IGF-1)]]
* [[Insulin-like growth factor 1 receptor|IGF1R]],<ref name="pmid18632619">{{cite journal | vauthors = Sehat B, Andersson S, Girnita L, Larsson O | title = Identification of c-Cbl as a new ligase for insulin-like growth factor-I receptor with distinct roles from Mdm2 in receptor ubiquitination and endocytosis | journal = Cancer Research | volume = 68 | issue = 14 | pages = 5669–77 | date = July 2008 | pmid = 18632619 | doi = 10.1158/0008-5472.CAN-07-6364 }}</ref>
* [[MDM4]]
* [[MDM4]],<ref name="pmid12483531">{{cite journal | vauthors = Kadakia M, Brown TL, McGorry MM, Berberich SJ | title = MdmX inhibits Smad transactivation | journal = Oncogene | volume = 21 | issue = 57 | pages = 8776–85 | date = December 2002 | pmid = 12483531 | doi = 10.1038/sj.onc.1205993 }}</ref><ref name="pmid10218570">{{cite journal | vauthors = Tanimura S, Ohtsuka S, Mitsui K, Shirouzu K, Yoshimura A, Ohtsubo M | title = MDM2 interacts with MDMX through their RING finger domains | journal = FEBS Letters | volume = 447 | issue = 1 | pages = 5–9 | date = March 1999 | pmid = 10218570 | doi = 10.1016/S0014-5793(99)00254-9 }}</ref><ref name="pmid12393902">{{cite journal | vauthors = Badciong JC, Haas AL | title = MdmX is a RING finger ubiquitin ligase capable of synergistically enhancing Mdm2 ubiquitination | journal = The Journal of Biological Chemistry | volume = 277 | issue = 51 | pages = 49668–75 | date = December 2002 | pmid = 12393902 | doi = 10.1074/jbc.M208593200 }}</ref><ref name="pmid18219319">{{cite journal | vauthors = Linke K, Mace PD, Smith CA, Vaux DL, Silke J, Day CL | title = Structure of the MDM2/MDMX RING domain heterodimer reveals dimerization is required for their ubiquitylation in trans | journal = Cell Death and Differentiation | volume = 15 | issue = 5 | pages = 841–8 | date = May 2008 | pmid = 18219319 | doi = 10.1038/sj.cdd.4402309 }}</ref>
* [[NUMB ]]
* [[NUMB (gene)|NUMB]],<ref name="pmid12646252">{{cite journal | vauthors = Yogosawa S, Miyauchi Y, Honda R, Tanaka H, Yasuda H | title = Mammalian Numb is a target protein of Mdm2, ubiquitin ligase | journal = Biochemical and Biophysical Research Communications | volume = 302 | issue = 4 | pages = 869–72 | date = March 2003 | pmid = 12646252 | doi = 10.1016/S0006-291X(03)00282-1 }}</ref><ref name="pmid18172499">{{cite journal | vauthors = Colaluca IN, Tosoni D, Nuciforo P, Senic-Matuglia F, Galimberti V, Viale G, Pece S, Di Fiore PP | title = NUMB controls p53 tumour suppressor activity | journal = Nature | volume = 451 | issue = 7174 | pages = 76–80 | date = January 2008 | pmid = 18172499 | doi = 10.1038/nature06412 }}</ref>
* [[p16]]
* [[P16]],<ref name=pmid18583933/><ref name=pmid14612427/><ref name="pmid9529249">{{cite journal | vauthors = Zhang Y, Xiong Y, Yarbrough WG | title = ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways | journal = Cell | volume = 92 | issue = 6 | pages = 725–34 | date = March 1998 | pmid = 9529249 | doi = 10.1016/S0092-8674(00)81401-4 }}</ref><ref name="pmid12085228">{{cite journal | vauthors = Clark PA, Llanos S, Peters G | title = Multiple interacting domains contribute to p14ARF mediated inhibition of MDM2 | journal = Oncogene | volume = 21 | issue = 29 | pages = 4498–507 | date = July 2002 | pmid = 12085228 | doi = 10.1038/sj.onc.1205558 }}</ref><ref name="pmid9529248">{{cite journal | vauthors = Pomerantz J, Schreiber-Agus N, Liégeois NJ, Silverman A, Alland L, Chin L, Potes J, Chen K, Orlow I, Lee HW, Cordon-Cardo C, DePinho RA | title = The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53 | journal = Cell | volume = 92 | issue = 6 | pages = 713–23 | date = March 1998 | pmid = 9529248 | doi = 10.1016/S0092-8674(00)81400-2 }}</ref>
* [[p53]]
* [[P53]],<ref name="pmid9153395">{{cite journal | vauthors = Haupt Y, Maya R, Kazaz A, Oren M | title = Mdm2 promotes the rapid degradation of p53 | journal = Nature | volume = 387 | issue = 6630 | pages = 296–9 | date = May 1997 | pmid = 9153395 | doi = 10.1038/387296a0 }}</ref><ref name="pmid9450543">{{cite journal | vauthors = Honda R, Tanaka H, Yasuda H | title = Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53 | journal = FEBS Letters | volume = 420 | issue = 1 | pages = 25–7 | date = December 1997 | pmid = 9450543 | doi = 10.1016/S0014-5793(97)01480-4 }}</ref>
* [[p73]]
* [[P73]],<ref name="pmid10435614">{{cite journal | vauthors = Bálint E, Bates S, Vousden KH | title = Mdm2 binds p73 alpha without targeting degradation | journal = Oncogene | volume = 18 | issue = 27 | pages = 3923–9 | date = July 1999 | pmid = 10435614 | doi = 10.1038/sj.onc.1202781 }}</ref><ref name="pmid10207051">{{cite journal | vauthors = Zeng X, Chen L, Jost CA, Maya R, Keller D, Wang X, Kaelin WG, Oren M, Chen J, Lu H | title = MDM2 suppresses p73 function without promoting p73 degradation | journal = Molecular and Cellular Biology | volume = 19 | issue = 5 | pages = 3257–66 | date = May 1999 | pmid = 10207051 | pmc = 84120 | doi = 10.1128/mcb.19.5.3257}}</ref>
* [[PCAF]]
* [[PCAF]],<ref name="pmid12068014">{{cite journal | vauthors = Jin Y, Zeng SX, Dai MS, Yang XJ, Lu H | title = MDM2 inhibits PCAF (p300/CREB-binding protein-associated factor)-mediated p53 acetylation | journal = The Journal of Biological Chemistry | volume = 277 | issue = 34 | pages = 30838–43 | date = August 2002 | pmid = 12068014 | doi = 10.1074/jbc.M204078200 }}</ref>
* [[PSMD10]]
* [[PSMD10]],<ref name="pmid18332869">{{cite journal | vauthors = Qiu W, Wu J, Walsh EM, Zhang Y, Chen CY, Fujita J, Xiao ZX | title = Retinoblastoma protein modulates gankyrin-MDM2 in regulation of p53 stability and chemosensitivity in cancer cells | journal = Oncogene | volume = 27 | issue = 29 | pages = 4034–43 | date = July 2008 | pmid = 18332869 | doi = 10.1038/onc.2008.43 }}</ref>
* [[PSME3]]
* [[PSME3]],<ref name="pmid18309296">{{cite journal | vauthors = Zhang Z, Zhang R | title = Proteasome activator PA28 gamma regulates p53 by enhancing its MDM2-mediated degradation | journal = The EMBO Journal | volume = 27 | issue = 6 | pages = 852–64 | date = March 2008 | pmid = 18309296 | pmc = 2265109 | doi = 10.1038/emboj.2008.25 }}</ref>
* [[RPL5]]
* [[Ribosomal protein L5|RPL5]],<ref name=pmid18426907/><ref name="pmid14612427">{{cite journal | vauthors = Zhang Y, Wolf GW, Bhat K, Jin A, Allio T, Burkhart WA, Xiong Y | title = Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway | journal = Molecular and Cellular Biology | volume = 23 | issue = 23 | pages = 8902–12 | date = December 2003 | pmid = 14612427 | pmc = 262682 | doi = 10.1128/MCB.23.23.8902-8912.2003 }}</ref><ref name="pmid7935455">{{cite journal | vauthors = Marechal V, Elenbaas B, Piette J, Nicolas JC, Levine AJ | title = The ribosomal L5 protein is associated with mdm-2 and mdm-2-p53 complexes | journal = Molecular and Cellular Biology | volume = 14 | issue = 11 | pages = 7414–20 | date = November 1994 | pmid = 7935455 | pmc = 359276 | doi = 10.1128/mcb.14.11.7414}}</ref>
* [[RPL11]]
* [[RPL11]],<ref name=pmid18426907/><ref name=pmid14612427/>
* [[PML]]
* [[Promyelocytic leukemia protein|PML]],<ref name="pmid15195100">{{cite journal | vauthors = Bernardi R, Scaglioni PP, Bergmann S, Horn HF, Vousden KH, Pandolfi PP | title = PML regulates p53 stability by sequestering Mdm2 to the nucleolus | journal = Nature Cell Biology | volume = 6 | issue = 7 | pages = 665–72 | date = July 2004 | pmid = 15195100 | doi = 10.1038/ncb1147 }}</ref><ref name="pmid14507915">{{cite journal | vauthors = Zhu H, Wu L, Maki CG | title = MDM2 and promyelocytic leukemia antagonize each other through their direct interaction with p53 | journal = The Journal of Biological Chemistry | volume = 278 | issue = 49 | pages = 49286–92 | date = December 2003 | pmid = 14507915 | doi = 10.1074/jbc.M308302200 }}</ref><ref name="pmid12915590">{{cite journal | vauthors = Kurki S, Latonen L, Laiho M | title = Cellular stress and DNA damage invoke temporally distinct Mdm2, p53 and PML complexes and damage-specific nuclear relocalization | journal = Journal of Cell Science | volume = 116 | issue = Pt 19 | pages = 3917–25 | date = October 2003 | pmid = 12915590 | doi = 10.1242/jcs.00714 }}</ref><ref name="pmid12759344">{{cite journal | vauthors = Wei X, Yu ZK, Ramalingam A, Grossman SR, Yu JH, Bloch DB, Maki CG | title = Physical and functional interactions between PML and MDM2 | journal = The Journal of Biological Chemistry | volume = 278 | issue = 31 | pages = 29288–97 | date = August 2003 | pmid = 12759344 | doi = 10.1074/jbc.M212215200 }}</ref>
* [[RPL26]]
* [[RPL26]],<ref name="pmid18951086">{{cite journal | vauthors = Ofir-Rosenfeld Y, Boggs K, Michael D, Kastan MB, Oren M | title = Mdm2 regulates p53 mRNA translation through inhibitory interactions with ribosomal protein L26 | journal = Molecular Cell | volume = 32 | issue = 2 | pages = 180–9 | date = October 2008 | pmid = 18951086 | pmc = 2587494 | doi = 10.1016/j.molcel.2008.08.031 }}</ref>
* [[RRM2B]]
* [[RRM2B]],<ref name="pmid19015526">{{cite journal | vauthors = Chang L, Zhou B, Hu S, Guo R, Liu X, Jones SN, Yen Y | title = ATM-mediated serine 72 phosphorylation stabilizes ribonucleotide reductase small subunit p53R2 protein against MDM2 to DNA damage | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 105 | issue = 47 | pages = 18519–24 | date = November 2008 | pmid = 19015526 | pmc = 2587585 | doi = 10.1073/pnas.0803313105 }}</ref>
* [[RYBP]]
* [[RYBP]],<ref name="pmid19098711">{{cite journal | vauthors = Chen D, Zhang J, Li M, Rayburn ER, Wang H, Zhang R | title = RYBP stabilizes p53 by modulating MDM2 | journal = EMBO Reports | volume = 10 | issue = 2 | pages = 166–72 | date = February 2009 | pmid = 19098711 | pmc = 2637313 | doi = 10.1038/embor.2008.231 }}</ref>
* [[Tata Binding Protein|TBP]]
* [[Tata Binding Protein|TBP]],<ref name="pmid9388200">{{cite journal | vauthors = Léveillard T, Wasylyk B | title = The MDM2 C-terminal region binds to TAFII250 and is required for MDM2 regulation of the cyclin A promoter | journal = The Journal of Biological Chemistry | volume = 272 | issue = 49 | pages = 30651–61 | date = December 1997 | pmid = 9388200 | doi = 10.1074/jbc.272.49.30651 }}</ref><ref name="pmid9271120">{{cite journal | vauthors = Thut CJ, Goodrich JA, Tjian R | title = Repression of p53-mediated transcription by MDM2: a dual mechanism | journal = Genes & Development | volume = 11 | issue = 15 | pages = 1974–86 | date = August 1997 | pmid = 9271120 | pmc = 316412 | doi = 10.1101/gad.11.15.1974 }}</ref> and
* [[UBC]]
* [[Ubiquitin C|UBC]].<ref name=pmid18583933/><ref name="pmid18566590">{{cite journal | vauthors = Song MS, Song SJ, Kim SY, Oh HJ, Lim DS | title = The tumour suppressor RASSF1A promotes MDM2 self-ubiquitination by disrupting the MDM2-DAXX-HAUSP complex | journal = The EMBO Journal | volume = 27 | issue = 13 | pages = 1863–74 | date = July 2008 | pmid = 18566590 | pmc = 2486425 | doi = 10.1038/emboj.2008.115 }}</ref><ref name="pmid18382127">{{cite journal | vauthors = Yang W, Dicker DT, Chen J, El-Deiry WS | title = CARPs enhance p53 turnover by degrading 14-3-3sigma and stabilizing MDM2 | journal = Cell Cycle | volume = 7 | issue = 5 | pages = 670–82 | date = March 2008 | pmid = 18382127 | doi = 10.4161/cc.7.5.5701 }}</ref>
{{Div col end}}
{{Div col end}}



Versione delle 12:41, 16 apr 2018

Struttura tridimensionale della Mdm2

Mdm2 è il nome sia del gene che della corrispettiva proteina che svolge la funzione di principale inibitore di p53, andandosi a legare ad esso ed inducendone l'ubiquitinazione e quindi la degradazione tramite proteosoma. Mdm2 appartiene pertanto alla famiglia delle ligasi E3.[1][2]

Interazioni

Mdm2 è regolata da molte proteine e miRNA per il suo ruolo centrale nel regolare p53. Interagisce con p53 inducendone la degradazione. Ciononostante p53 incrementa l'attività e la produzione di Mdm2 sia direttamente che indirettamente, formando così un feedback negativo autoregolatorio. La proteina ARF (conosciuta anche come p14) è un inibitore di Mdm2.

Mdm2 interagisce con le seguenti proteine:

Interazioni farmacologiche

La molecola nutlina inibisce l'interazione tra Mdm2 e p53 incrementanto la stabilità di quest'ultimo, ciononostante è ancora in fase di sperimentazione.[50]


Voci correlate

Note

  1. ^ J. D. Oliner, K. W. Kinzler e P. S. Meltzer, Amplification of a gene encoding a p53-associated protein in human sarcomas, in Nature, vol. 358, n. 6381, 2 luglio 1992, pp. 80–83, DOI:10.1038/358080a0. URL consultato il 16 aprile 2018.
  2. ^ Mark Wade, Ee Tsin Wong e Mengjia Tang, Hdmx modulates the outcome of p53 activation in human tumor cells, in The Journal of Biological Chemistry, vol. 281, n. 44, 3 novembre 2006, pp. 33036–33044, DOI:10.1074/jbc.M605405200. URL consultato il 16 aprile 2018.
  3. ^ Goldberg Z, Vogt Sionov R, Berger M, Zwang Y, Perets R, Van Etten RA, Oren M, Taya Y, Haupt Y, Tyrosine phosphorylation of Mdm2 by c-Abl: implications for p53 regulation, in The EMBO Journal, vol. 21, n. 14, July 2002, pp. 3715–27, DOI:10.1093/emboj/cdf384.
  4. ^ a b Wang P, Wu Y, Ge X, Ma L, Pei G, Subcellular localization of beta-arrestins is determined by their intact N domain and the nuclear export signal at the C terminus, in The Journal of Biological Chemistry, vol. 278, n. 13, March 2003, pp. 11648–53, DOI:10.1074/jbc.M208109200.
  5. ^ a b Shenoy SK, Xiao K, Venkataramanan V, Snyder PM, Freedman NJ, Weissman AM, Nedd4 mediates agonist-dependent ubiquitination, lysosomal targeting, and degradation of the beta2-adrenergic receptor, in The Journal of Biological Chemistry, vol. 283, n. 32, August 2008, pp. 22166–76, DOI:10.1074/jbc.M709668200.
  6. ^ Wang P, Gao H, Ni Y, Wang B, Wu Y, Ji L, Qin L, Ma L, Pei G, Beta-arrestin 2 functions as a G-protein-coupled receptor-activated regulator of oncoprotein Mdm2, in The Journal of Biological Chemistry, vol. 278, n. 8, February 2003, pp. 6363–70, DOI:10.1074/jbc.M210350200.
  7. ^ Zhao L, Samuels T, Winckler S, Korgaonkar C, Tompkins V, Horne MC, Quelle DE, Cyclin G1 has growth inhibitory activity linked to the ARF-Mdm2-p53 and pRb tumor suppressor pathways, in Molecular Cancer Research, vol. 1, n. 3, January 2003, pp. 195–206.
  8. ^ a b Mirnezami AH, Campbell SJ, Darley M, Primrose JN, Johnson PW, Blaydes JP, Hdm2 recruits a hypoxia-sensitive corepressor to negatively regulate p53-dependent transcription, in Current Biology, vol. 13, n. 14, July 2003, pp. 1234–9, DOI:10.1016/S0960-9822(03)00454-8.
  9. ^ a b c Ivanchuk SM, Mondal S, Rutka JT, p14ARF interacts with DAXX: effects on HDM2 and p53, in Cell Cycle, vol. 7, n. 12, June 2008, pp. 1836–50, DOI:10.4161/cc.7.12.6025.
  10. ^ Maguire M, Nield PC, Devling T, Jenkins RE, Park BK, Polański R, Vlatković N, Boyd MT, MDM2 regulates dihydrofolate reductase activity through monoubiquitination, in Cancer Research, vol. 68, n. 9, May 2008, pp. 3232–42, DOI:10.1158/0008-5472.CAN-07-5271.
  11. ^ Grossman SR, Perez M, Kung AL, Joseph M, Mansur C, Xiao ZX, Kumar S, Howley PM, Livingston DM, p300/MDM2 complexes participate in MDM2-mediated p53 degradation, in Molecular Cell, vol. 2, n. 4, October 1998, pp. 405–15, DOI:10.1016/S1097-2765(00)80140-9.
  12. ^ Miyamoto-Sato E, Fujimori S, Ishizaka M, Hirai N, Masuoka K, Saito R, Ozawa Y, Hino K, Washio T, Tomita M, Yamashita T, Oshikubo T, Akasaka H, Sugiyama J, Matsumoto Y, Yanagawa H, A comprehensive resource of interacting protein regions for refining human transcription factor networks, in PLoS One, vol. 5, n. 2, Feb 2010, pp. e9289, DOI:10.1371/journal.pone.0009289.
  13. ^ Ochocka AM, Kampanis P, Nicol S, Allende-Vega N, Cox M, Marcar L, Milne D, Fuller-Pace F, Meek D, FKBP25, a novel regulator of the p53 pathway, induces the degradation of MDM2 and activation of p53, in FEBS Letters, vol. 583, n. 4, February 2009, pp. 621–6, DOI:10.1016/j.febslet.2009.01.009.
  14. ^ Brenkman AB, de Keizer PL, van den Broek NJ, Jochemsen AG, Burgering BM, Mdm2 induces mono-ubiquitination of FOXO4, in PLoS One, vol. 3, n. 7, 2008, pp. e2819, DOI:10.1371/journal.pone.0002819.
  15. ^ a b c Dai MS, Sun XX, Lu H, Aberrant expression of nucleostemin activates p53 and induces cell cycle arrest via inhibition of MDM2, in Molecular and Cellular Biology, vol. 28, n. 13, July 2008, pp. 4365–76, DOI:10.1128/MCB.01662-07.
  16. ^ Ito A, Kawaguchi Y, Lai CH, Kovacs JJ, Higashimoto Y, Appella E, Yao TP, MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation, in The EMBO Journal, vol. 21, n. 22, November 2002, pp. 6236–45, DOI:10.1093/emboj/cdf616.
  17. ^ Chen D, Li M, Luo J, Gu W, Direct interactions between HIF-1 alpha and Mdm2 modulate p53 function, in The Journal of Biological Chemistry, vol. 278, n. 16, April 2003, pp. 13595–8, DOI:10.1074/jbc.C200694200.
  18. ^ Ravi R, Mookerjee B, Bhujwalla ZM, Sutter CH, Artemov D, Zeng Q, Dillehay LE, Madan A, Semenza GL, Bedi A, Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha, in Genes & Development, vol. 14, n. 1, January 2000, pp. 34–44, DOI:10.1101/gad.14.1.34.
  19. ^ Legube G, Linares LK, Lemercier C, Scheffner M, Khochbin S, Trouche D, Tip60 is targeted to proteasome-mediated degradation by Mdm2 and accumulates after UV irradiation, in The EMBO Journal, vol. 21, n. 7, April 2002, pp. 1704–12, DOI:10.1093/emboj/21.7.1704.
  20. ^ Sehat B, Andersson S, Girnita L, Larsson O, Identification of c-Cbl as a new ligase for insulin-like growth factor-I receptor with distinct roles from Mdm2 in receptor ubiquitination and endocytosis, in Cancer Research, vol. 68, n. 14, July 2008, pp. 5669–77, DOI:10.1158/0008-5472.CAN-07-6364.
  21. ^ Kadakia M, Brown TL, McGorry MM, Berberich SJ, MdmX inhibits Smad transactivation, in Oncogene, vol. 21, n. 57, December 2002, pp. 8776–85, DOI:10.1038/sj.onc.1205993.
  22. ^ Tanimura S, Ohtsuka S, Mitsui K, Shirouzu K, Yoshimura A, Ohtsubo M, MDM2 interacts with MDMX through their RING finger domains, in FEBS Letters, vol. 447, n. 1, March 1999, pp. 5–9, DOI:10.1016/S0014-5793(99)00254-9.
  23. ^ Badciong JC, Haas AL, MdmX is a RING finger ubiquitin ligase capable of synergistically enhancing Mdm2 ubiquitination, in The Journal of Biological Chemistry, vol. 277, n. 51, December 2002, pp. 49668–75, DOI:10.1074/jbc.M208593200.
  24. ^ Linke K, Mace PD, Smith CA, Vaux DL, Silke J, Day CL, Structure of the MDM2/MDMX RING domain heterodimer reveals dimerization is required for their ubiquitylation in trans, in Cell Death and Differentiation, vol. 15, n. 5, May 2008, pp. 841–8, DOI:10.1038/sj.cdd.4402309.
  25. ^ Yogosawa S, Miyauchi Y, Honda R, Tanaka H, Yasuda H, Mammalian Numb is a target protein of Mdm2, ubiquitin ligase, in Biochemical and Biophysical Research Communications, vol. 302, n. 4, March 2003, pp. 869–72, DOI:10.1016/S0006-291X(03)00282-1.
  26. ^ Colaluca IN, Tosoni D, Nuciforo P, Senic-Matuglia F, Galimberti V, Viale G, Pece S, Di Fiore PP, NUMB controls p53 tumour suppressor activity, in Nature, vol. 451, n. 7174, January 2008, pp. 76–80, DOI:10.1038/nature06412.
  27. ^ a b c Zhang Y, Wolf GW, Bhat K, Jin A, Allio T, Burkhart WA, Xiong Y, Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway, in Molecular and Cellular Biology, vol. 23, n. 23, December 2003, pp. 8902–12, DOI:10.1128/MCB.23.23.8902-8912.2003.
  28. ^ Zhang Y, Xiong Y, Yarbrough WG, ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways, in Cell, vol. 92, n. 6, March 1998, pp. 725–34, DOI:10.1016/S0092-8674(00)81401-4.
  29. ^ Clark PA, Llanos S, Peters G, Multiple interacting domains contribute to p14ARF mediated inhibition of MDM2, in Oncogene, vol. 21, n. 29, July 2002, pp. 4498–507, DOI:10.1038/sj.onc.1205558.
  30. ^ Pomerantz J, Schreiber-Agus N, Liégeois NJ, Silverman A, Alland L, Chin L, Potes J, Chen K, Orlow I, Lee HW, Cordon-Cardo C, DePinho RA, The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53, in Cell, vol. 92, n. 6, March 1998, pp. 713–23, DOI:10.1016/S0092-8674(00)81400-2.
  31. ^ Haupt Y, Maya R, Kazaz A, Oren M, Mdm2 promotes the rapid degradation of p53, in Nature, vol. 387, n. 6630, May 1997, pp. 296–9, DOI:10.1038/387296a0.
  32. ^ Honda R, Tanaka H, Yasuda H, Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53, in FEBS Letters, vol. 420, n. 1, December 1997, pp. 25–7, DOI:10.1016/S0014-5793(97)01480-4.
  33. ^ Bálint E, Bates S, Vousden KH, Mdm2 binds p73 alpha without targeting degradation, in Oncogene, vol. 18, n. 27, July 1999, pp. 3923–9, DOI:10.1038/sj.onc.1202781.
  34. ^ Zeng X, Chen L, Jost CA, Maya R, Keller D, Wang X, Kaelin WG, Oren M, Chen J, Lu H, MDM2 suppresses p73 function without promoting p73 degradation, in Molecular and Cellular Biology, vol. 19, n. 5, May 1999, pp. 3257–66, DOI:10.1128/mcb.19.5.3257.
  35. ^ Jin Y, Zeng SX, Dai MS, Yang XJ, Lu H, MDM2 inhibits PCAF (p300/CREB-binding protein-associated factor)-mediated p53 acetylation, in The Journal of Biological Chemistry, vol. 277, n. 34, August 2002, pp. 30838–43, DOI:10.1074/jbc.M204078200.
  36. ^ Qiu W, Wu J, Walsh EM, Zhang Y, Chen CY, Fujita J, Xiao ZX, Retinoblastoma protein modulates gankyrin-MDM2 in regulation of p53 stability and chemosensitivity in cancer cells, in Oncogene, vol. 27, n. 29, July 2008, pp. 4034–43, DOI:10.1038/onc.2008.43.
  37. ^ Zhang Z, Zhang R, Proteasome activator PA28 gamma regulates p53 by enhancing its MDM2-mediated degradation, in The EMBO Journal, vol. 27, n. 6, March 2008, pp. 852–64, DOI:10.1038/emboj.2008.25.
  38. ^ Marechal V, Elenbaas B, Piette J, Nicolas JC, Levine AJ, The ribosomal L5 protein is associated with mdm-2 and mdm-2-p53 complexes, in Molecular and Cellular Biology, vol. 14, n. 11, November 1994, pp. 7414–20, DOI:10.1128/mcb.14.11.7414.
  39. ^ Bernardi R, Scaglioni PP, Bergmann S, Horn HF, Vousden KH, Pandolfi PP, PML regulates p53 stability by sequestering Mdm2 to the nucleolus, in Nature Cell Biology, vol. 6, n. 7, July 2004, pp. 665–72, DOI:10.1038/ncb1147.
  40. ^ Zhu H, Wu L, Maki CG, MDM2 and promyelocytic leukemia antagonize each other through their direct interaction with p53, in The Journal of Biological Chemistry, vol. 278, n. 49, December 2003, pp. 49286–92, DOI:10.1074/jbc.M308302200.
  41. ^ Kurki S, Latonen L, Laiho M, Cellular stress and DNA damage invoke temporally distinct Mdm2, p53 and PML complexes and damage-specific nuclear relocalization, in Journal of Cell Science, vol. 116, Pt 19, October 2003, pp. 3917–25, DOI:10.1242/jcs.00714.
  42. ^ Wei X, Yu ZK, Ramalingam A, Grossman SR, Yu JH, Bloch DB, Maki CG, Physical and functional interactions between PML and MDM2, in The Journal of Biological Chemistry, vol. 278, n. 31, August 2003, pp. 29288–97, DOI:10.1074/jbc.M212215200.
  43. ^ Ofir-Rosenfeld Y, Boggs K, Michael D, Kastan MB, Oren M, Mdm2 regulates p53 mRNA translation through inhibitory interactions with ribosomal protein L26, in Molecular Cell, vol. 32, n. 2, October 2008, pp. 180–9, DOI:10.1016/j.molcel.2008.08.031.
  44. ^ Chang L, Zhou B, Hu S, Guo R, Liu X, Jones SN, Yen Y, ATM-mediated serine 72 phosphorylation stabilizes ribonucleotide reductase small subunit p53R2 protein against MDM2 to DNA damage, in Proceedings of the National Academy of Sciences of the United States of America, vol. 105, n. 47, November 2008, pp. 18519–24, DOI:10.1073/pnas.0803313105.
  45. ^ Chen D, Zhang J, Li M, Rayburn ER, Wang H, Zhang R, RYBP stabilizes p53 by modulating MDM2, in EMBO Reports, vol. 10, n. 2, February 2009, pp. 166–72, DOI:10.1038/embor.2008.231.
  46. ^ Léveillard T, Wasylyk B, The MDM2 C-terminal region binds to TAFII250 and is required for MDM2 regulation of the cyclin A promoter, in The Journal of Biological Chemistry, vol. 272, n. 49, December 1997, pp. 30651–61, DOI:10.1074/jbc.272.49.30651.
  47. ^ Thut CJ, Goodrich JA, Tjian R, Repression of p53-mediated transcription by MDM2: a dual mechanism, in Genes & Development, vol. 11, n. 15, August 1997, pp. 1974–86, DOI:10.1101/gad.11.15.1974.
  48. ^ Song MS, Song SJ, Kim SY, Oh HJ, Lim DS, The tumour suppressor RASSF1A promotes MDM2 self-ubiquitination by disrupting the MDM2-DAXX-HAUSP complex, in The EMBO Journal, vol. 27, n. 13, July 2008, pp. 1863–74, DOI:10.1038/emboj.2008.115.
  49. ^ Yang W, Dicker DT, Chen J, El-Deiry WS, CARPs enhance p53 turnover by degrading 14-3-3sigma and stabilizing MDM2, in Cell Cycle, vol. 7, n. 5, March 2008, pp. 670–82, DOI:10.4161/cc.7.5.5701.
  50. ^ Lyubomir T. Vassilev, Binh T. Vu e Bradford Graves, In vivo activation of the p53 pathway by small-molecule antagonists of MDM2, in Science (New York, N.Y.), vol. 303, n. 5659, 6 febbraio 2004, pp. 844–848, DOI:10.1126/science.1092472. URL consultato il 16 aprile 2018.
  Portale Biologia: accedi alle voci di Wikipedia che trattano di Biologia