Zonoedro

Da Wikipedia, l'enciclopedia libera.

In geometria, lo zonoedro è un poliedro convesso in cui ogni faccia è un poligono dotato di simmetria centrale, ovvero invariante rispetto ad una rotazione di 180° con centro in un suo punto interno (centro del poligono).

Esempi[modifica | modifica sorgente]

I poligoni regolari con simmetria centrale sono tutti e soli i pologoni regolari con un numero pari di lati: questo consente di enumerare facilmente gli zonoedri con facce regolari.

Due zonoedri significativi appartengono all'insieme dei duali dei solidi Archimedei: si tratta del dodecaedro rombico e del triacontaedro rombico.

Un altro zonoedro è l'enneacontaedro rombico.

Proprietà[modifica | modifica sorgente]

Gli zonoedri sono caratterizzati dal fatto di essere somme di Minkowski di segmenti. Questa caratterizzazione permette di estendere la definizione a un numero qualsiasi di dimensioni e di introdurre gli zonotopi. Da questo punto di vista gli zonoedri sono zonotopi in tre dimensioni, mentre i parallelogrammi sono zonotopi in due dimensioni.

Si dice zonoedro equilatero ogni zonoedro con gli spigoli tutti della stessa lunghezza.

Ogni poliedro convesso le cui facce sono tutte dei parallelogrammi è uno zonoedro.

Collegamenti esterni[modifica | modifica sorgente]


matematica Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica