Utente:IndyJr/TNO distaccati

Da Wikipedia, l'enciclopedia libera.
Vai alla navigazione Vai alla ricerca
Designation Diameter 

(km)
H q

(AU)
a

(AU)
Q

(AU)
ω (°) Discovery

Year
Discoverer Notes & Refs
Template:Mpl- 243 6.3 44.252 221.2 398 316.93 2000 M. W. Buie [1]
Template:Mpl- 216 4.7 41.207 57.795 74.383 316.481 2000 Spacewatch ≈3:8 Neptune resonance
2001 FL193 81 8.7 40.29 50.26 60.23 108.6 2001 R. L. Allen, G. Bernstein, R. Malhotra orbit extremely poor, might not be a TNO
2001 KA77 634 5.0 43.41 47.74 52.07 120.3 2001 M. W. Buie borderline classical KBO
2002 CP154 222 6.5 42 52 62 50 2002 M. W. Buie orbit fairly poor, but definitely a detached object
2003 UY291 147 7.4 41.19 48.95 56.72 15.6 2003 M. W. Buie borderline classical KBO
Sedna 995 1.5 76.072 483.3 890 311.61 2003 M. E. Brown, C. A. Trujillo, D. L. Rabinowitz Sednoid
2004 PD112 267 6.1 40 70 90 40 2004 M. W. Buie orbit very poor, might not be a detached object
Template:Mpl- 222 6.5 47.308 315 584 326.925 2004 Cerro Tololo (unspecified) [2][3][4]
2004 XR190 612 4.1 51.085 57.336 63.586 284.93 2004 R. L. Allen, B. J. Gladman, J. J. Kavelaars

J.-M. Petit, J. W. Parker, P. Nicholson
pseudo-Sednoid, very high inclination; Neptune Mean Motion Resonance (MMR) along with the Kozai Resonance (KR) modified the eccentricity and inclination of 2004 XR190 to obtain a very high perihelion[5][6]
2005 CG81 267 6.1 41.03 54.10 67.18 57.12 2005 CFEPS
Template:Mpl- 161 7.2 41.215 62.98 84.75 349.86 2005 M. W. Buie
Template:Mpl- 372 4.5 46.197 75.546 104.896 171.023 2005 A. C. Becker, A. W. Puckett, J. M. Kubica Neptune Mean Motion Resonance (MMR) along with the Kozai Resonance (KR) modified the eccentricity and inclination to obtain a high perihelion
2006 AO101 168 7.1 -- -- -- -- 2006 Mauna Kea (unspecified) orbit extremely poor, might not be a TNO
Template:Mpl- 558 4.5 40.383 48.390 56.397 6.536 2007 Palomar (unspecified) borderline classical KBO
2007 LE38 176 7.0 41.798 54.56 67.32 53.96 2007 Mauna Kea (unspecified)
2008 ST291 640 4.2 42.27 99.3 156.4 324.37 2008 M. E. Schwamb, M. E. Brown, D. L. Rabinowitz ≈1:6 Neptune resonance
2009 KX36 111 8.0 -- 100 100 -- 2009 Mauna Kea (unspecified) orbit extremely poor, might not be a TNO
Template:Mpl- 486 4.7 45.102 55.501 65.90 33.01 2010 Pan-STARRS ≈2:5 Neptune resonance; Neptune Mean Motion Resonance (MMR) along with the Kozai Resonance (KR) modified the eccentricity and inclination to obtain a high perihelion
2010 ER65 404 5.0 40.035 99.71 159.39 324.19 2010 D. L. Rabinowitz, S. W. Tourtellotte
2010 GB174 222 6.5 48.8 360 670 347.7 2010 Mauna Kea (unspecified)
2012 FH84 161 7.2 42 56 70 10 2012 Las Campanas (unspecified)
2012 VP113 702 4.0 80.47 256 431 293.8 2012 S. S. Sheppard, C. A. Trujillo Sednoid
2013 FQ28 280 6.0 45.9 63.1 80.3 230 2013 S. S. Sheppard, C. A. Trujillo ≈1:3 Neptune resonance; Neptune Mean Motion Resonance (MMR) along with the Kozai Resonance (KR) modified the eccentricity and inclination to obtain a high perihelion
2013 FT28 202 6.7 43.5 310 580 40.3 2013 S. S. Sheppard
Template:Mpl- 212 6.6 41.061 155.1 269.1 42.38 2013 OSSOS
2013 GQ136 222 6.5 40.79 49.06 57.33 155.3 2013 OSSOS borderline classical KBO
2013 GG138 212 6.6 46.64 47.792 48.946 128 2013 OSSOS borderline classical KBO
Template:Mpl- 111 8.0 42.603 73.12 103.63 178.0 2013 OSSOS
Template:Mpl- 147 7.4 44.04 48.158 52.272 179.8 2013 OSSOS borderline classical KBO
2013 SY99 202 6.7 50.02 694 1338 32.1 2013 OSSOS
2013 SK100 134 7.6 45.468 61.61 77.76 11.5 2013 OSSOS
Template:Mpl- 255 6.3 43.89 195.7 348 252.33 2013 OSSOS
2013 UB17 176 7.0 44.49 62.31 80.13 308.93 2013 OSSOS
2013 VD24 128 7.8 40 50 70 197 2013 Dark Energy Survey orbit very poor, might not be a detached object
2013 YJ151 336 5.4 40.866 72.35 103.83 141.83 2013 Pan-STARRS
2014 EZ51 770 3.7 40.70 52.49 64.28 329.84 2014 Pan-STARRS
2014 FC69 533 4.6 40.28 73.06 105.8 190.57 2014 S. S. Sheppard, C. A. Trujillo
2014 FZ71 185 6.9 55.9 76.2 96.5 245 2014 S. S. Sheppard, C. A. Trujillo pseudo-Sednoid; ≈1:4 Neptune resonance; Neptune Mean Motion Resonance (MMR) along with the Kozai Resonance (KR) modified the eccentricity and inclination to obtain a very high perihelion
2014 FC72 509 4.5 51.670 76.329 100.99 32.85 2014 Pan-STARRS pseudo-Sednoid; ≈1:4 Neptune resonance; Neptune Mean Motion Resonance (MMR) along with the Kozai Resonance (KR) modified the eccentricity and inclination to obtain a very high perihelion
2014 JM80 352 5.5 46.00 63.00 80.01 96.1 2014 Pan-STARRS ≈1:3 Neptune resonance; Neptune Mean Motion Resonance (MMR) along with the Kozai Resonance (KR) modified the eccentricity and inclination to obtain a high perihelion
2014 JS80 306 5.5 40.013 48.291 56.569 174.5 2014 Pan-STARRS borderline classical KBO
2014 OJ394 423 5.0 40.80 52.97 65.14 271.60 2014 Pan-STARRS in 3:7 Neptune resonance
2014 QR441 193 6.8 42.6 67.8 93.0 283 2014 Dark Energy Survey
2014 SR349 202 6.6 47.6 300 540 341.1 2014 S. S. Sheppard, C. A. Trujillo
2014 SS349 134 7.6 45 140 240 148 2014 S. S. Sheppard, C. A. Trujillo ≈2:10 Neptune resonance; Neptune Mean Motion Resonance (MMR) along with the Kozai Resonance (KR) modified the eccentricity and inclination to obtain a high perihelion[7]
2014 ST373 330 5.5 50.13 104.0 157.8 297.52 2014 Dark Energy Survey
2014 UT228 154 7.3 43.97 48.593 53.216 49.9 2014 OSSOS borderline classical KBO
2014 UA230 222 6.5 42.27 55.05 67.84 132.8 2014 OSSOS
2014 UO231 97 8.3 42.25 55.11 67.98 234.56 2014 OSSOS
2014 WK509 584 4.0 40.08 50.79 61.50 135.4 2014 Pan-STARRS
2014 WB556 147 7.4 42.6 280 520 234 2014 Dark Energy Survey
2015 AL281 293 6.1 42 48 54 120 2015 Pan-STARRS borderline classical KBO

orbit very poor, might not be a detached object
Template:Mpl- 486 4.8 41.380 55.372 69.364 157.72 2015 Pan-STARRS
Template:Mpl- 352 5.5 44.82 47.866 50.909 293.2 2015 Pan-STARRS borderline classical KBO
2015 FJ345 117 7.9 51 63.0 75.2 78 2015 S. S. Sheppard, C. A. Trujillo pseudo-Sednoid; ≈1:3 Neptune resonance; Neptune Mean Motion Resonance (MMR) along with the Kozai Resonance (KR) modified the eccentricity and inclination to obtain a very high perihelion
2015 GP50 222 6.5 40.4 55.2 70.0 130 2015 S. S. Sheppard, C. A. Trujillo
2015 KH162 671 3.9 41.63 62.29 82.95 296.805 2015 S. S. Sheppard, D. J. Tholen, C. A. Trujillo
2015 KG163 101 8.3 40.502 826 1610 32.06 2015 OSSOS
2015 KH163 117 7.9 40.06 157.2 274 230.29 2015 OSSOS ≈1:12 Neptune resonance
2015 KE172 106 8.1 44.137 133.12 222.1 15.43 2015 OSSOS 1:9 Neptune resonance
2015 KG172 280 6.0 42 55 69 35 2015 R. L. Allen

D. James

D. Herrera
orbit fairly poor, might not be a detached object
2015 KQ174 154 7.3 49.31 55.40 61.48 294.0 2015 Mauna Kea (unspecified) pseudo-Sednoid; ≈2:5 Neptune resonance; Neptune Mean Motion Resonance (MMR) along with the Kozai Resonance (KR) modified the eccentricity and inclination to obtain a very high perihelion
2015 RX245 255 6.2 45.5 410 780 65.3 2015 OSSOS
Leleākūhonua 300 5.5 65.02 1042 2019 118.0 2015 S. S. Sheppard, C. A. Trujillo, D. J. Tholen Sednoid
2017 DP121 161 7.2 40.52 50.48 60.45 217.9 2017
2017 FP161 168 7.1 40.88 47.99 55.1 218 2017 borderline classical KBO
2017 SN132 97 5.8 40.949 79.868 118.786 148.769 2017 S. S. Sheppard, C. A. Trujillo, D. J. Tholen
2018 VM35 134 7.6 45.289 240.575 435.861 302.008 2018 ???

I TNO distaccati sono una classe dinamica di pianeti minori nei confini esterni del sistema solare e appartengono alla più ampia famiglia di oggetti transnettuniani (TNO). Questi oggetti hanno orbite i cui punti più vicini al Sole (perielio) sono sufficientemente distanti dall'influenza gravitazionale di Nettuno da essere solo moderatamente influenzati da quest'ultimo e dagli altri pianeti conosciuti: questo li fa sembrare "staccati" dal resto del sistema solare, tranne che per il loro legame gravitazione con il Sole.[8][9]

I TNO distaccati differiscono sostanzialmente dalla maggior parte degli altri TNO noti, che formano un insieme vagamente definito di popolazioni che sono state perturbate a vari livelli sulla loro orbita attuale da incontri gravitazionali con i pianeti giganti, prevalentemente Nettuno. I TNO distaccati hanno perieli più grandi di queste altre popolazioni TNO, inclusi gli oggetti in risonanza orbitale con Nettuno, come Plutone, i classici oggetti della cintura di Kuiper in orbite non risonanti come Makemake e gli oggetti del disco diffuso come Eris.

I TNO distaccati sono stati indicati nella letteratura scientifica anche come oggetti del disco diffuso esteso (E-SDO),[10] oggetti distaccati distanti (DDO),[11] o estesi diffusi, come nella classificazione formale del Deep Ecliptic Survey.[12] Ciò riflette la gradazione dinamica che può esistere tra i parametri orbitali del disco diffuso e la popolazione distaccata.

Almeno nove di questi corpi sono stati identificati in modo sicuro[13] di cui il più grande, il più distante e il più noto è Sedna. Quelli con perielio maggiore di 50 au sono chiamati sednoidi. A partire dal 2018, ci sono tre sednoidi conosciuti, Sedna, 2012 VP113 e Leleākūhonua .

Orbite[modifica | modifica wikitesto]

I TNO distaccati hanno il perielio molto più grande dell'afelio di Nettuno. Spesso hanno orbite molto ellittiche e molto grandi con semiassi maggiori fino a poche centinaia di unità astronomiche (au, il raggio dell'orbita terrestre). Tali orbite non possono essere state determinate dalle perturbazioni gravitazionali dei pianeti giganti, nemmeno da Nettuno. Invece, sono state avanzate una serie di spiegazioni, incluso un incontro con una stella di passaggio[14] o un oggetto distante delle dimensioni di un pianeta, [11] o lo stesso Nettuno (che un tempo potrebbe aver avuto un'orbita molto più eccentrica, da cui potrebbe aver trascinato gli oggetti nella loro orbita attuale) [15] [16] [17] [18] [19] o espulso pianeti (presenti nel primo sistema solare che furono espulsi). [20] [21] [22]

Gli oggetti elencati di seguito hanno un perielio superiore a 40 AU e un semiasse maggiore di oltre 47,7 AU (la risonanza 1: 2 con Nettuno e il limite esterno approssimativo della fascia di Kuiper) [23]

Designation Diameter 

(km)
H q

(AU)
a

(AU)
Q

(AU)
ω (°) Discovery

Year
Discoverer Notes & Refs
Template:Mpl- 243 6.3 44.252 221.2 398 316.93 2000 M. W. Buie [1]
Template:Mpl- 216 4.7 41.207 57.795 74.383 316.481 2000 Spacewatch ≈3:8 Neptune resonance
2001 FL193 81 8.7 40.29 50.26 60.23 108.6 2001 R. L. Allen, G. Bernstein, R. Malhotra orbit extremely poor, might not be a TNO
2001 KA77 634 5.0 43.41 47.74 52.07 120.3 2001 M. W. Buie borderline classical KBO
2002 CP154 222 6.5 42 52 62 50 2002 M. W. Buie orbit fairly poor, but definitely a detached object
2003 UY291 147 7.4 41.19 48.95 56.72 15.6 2003 M. W. Buie borderline classical KBO
Sedna 995 1.5 76.072 483.3 890 311.61 2003 M. E. Brown, C. A. Trujillo, D. L. Rabinowitz Sednoid
2004 PD112 267 6.1 40 70 90 40 2004 M. W. Buie orbit very poor, might not be a detached object
Template:Mpl- 222 6.5 47.308 315 584 326.925 2004 Cerro Tololo (unspecified) [2][3][4]
2004 XR190 612 4.1 51.085 57.336 63.586 284.93 2004 R. L. Allen, B. J. Gladman, J. J. Kavelaars

J.-M. Petit, J. W. Parker, P. Nicholson
pseudo-Sednoid, very high inclination; Neptune Mean Motion Resonance (MMR) along with the Kozai Resonance (KR) modified the eccentricity and inclination of 2004 XR190 to obtain a very high perihelion[24][6]
2005 CG81 267 6.1 41.03 54.10 67.18 57.12 2005 CFEPS
Template:Mpl- 161 7.2 41.215 62.98 84.75 349.86 2005 M. W. Buie
Template:Mpl- 372 4.5 46.197 75.546 104.896 171.023 2005 A. C. Becker, A. W. Puckett, J. M. Kubica Neptune Mean Motion Resonance (MMR) along with the Kozai Resonance (KR) modified the eccentricity and inclination to obtain a high perihelion
2006 AO101 168 7.1 -- -- -- -- 2006 Mauna Kea (unspecified) orbit extremely poor, might not be a TNO
Template:Mpl- 558 4.5 40.383 48.390 56.397 6.536 2007 Palomar (unspecified) borderline classical KBO
2007 LE38 176 7.0 41.798 54.56 67.32 53.96 2007 Mauna Kea (unspecified)
2008 ST291 640 4.2 42.27 99.3 156.4 324.37 2008 M. E. Schwamb, M. E. Brown, D. L. Rabinowitz ≈1:6 Neptune resonance
2009 KX36 111 8.0 -- 100 100 -- 2009 Mauna Kea (unspecified) orbit extremely poor, might not be a TNO
Template:Mpl- 486 4.7 45.102 55.501 65.90 33.01 2010 Pan-STARRS ≈2:5 Neptune resonance; Neptune Mean Motion Resonance (MMR) along with the Kozai Resonance (KR) modified the eccentricity and inclination to obtain a high perihelion
2010 ER65 404 5.0 40.035 99.71 159.39 324.19 2010 D. L. Rabinowitz, S. W. Tourtellotte
2010 GB174 222 6.5 48.8 360 670 347.7 2010 Mauna Kea (unspecified)
2012 FH84 161 7.2 42 56 70 10 2012 Las Campanas (unspecified)
2012 VP113 702 4.0 80.47 256 431 293.8 2012 S. S. Sheppard, C. A. Trujillo Sednoid
2013 FQ28 280 6.0 45.9 63.1 80.3 230 2013 S. S. Sheppard, C. A. Trujillo ≈1:3 Neptune resonance; Neptune Mean Motion Resonance (MMR) along with the Kozai Resonance (KR) modified the eccentricity and inclination to obtain a high perihelion
2013 FT28 202 6.7 43.5 310 580 40.3 2013 S. S. Sheppard
Template:Mpl- 212 6.6 41.061 155.1 269.1 42.38 2013 OSSOS
2013 GQ136 222 6.5 40.79 49.06 57.33 155.3 2013 OSSOS borderline classical KBO
2013 GG138 212 6.6 46.64 47.792 48.946 128 2013 OSSOS borderline classical KBO
Template:Mpl- 111 8.0 42.603 73.12 103.63 178.0 2013 OSSOS
Template:Mpl- 147 7.4 44.04 48.158 52.272 179.8 2013 OSSOS borderline classical KBO
2013 SY99 202 6.7 50.02 694 1338 32.1 2013 OSSOS
2013 SK100 134 7.6 45.468 61.61 77.76 11.5 2013 OSSOS
Template:Mpl- 255 6.3 43.89 195.7 348 252.33 2013 OSSOS
2013 UB17 176 7.0 44.49 62.31 80.13 308.93 2013 OSSOS
2013 VD24 128 7.8 40 50 70 197 2013 Dark Energy Survey orbit very poor, might not be a detached object
2013 YJ151 336 5.4 40.866 72.35 103.83 141.83 2013 Pan-STARRS
2014 EZ51 770 3.7 40.70 52.49 64.28 329.84 2014 Pan-STARRS
2014 FC69 533 4.6 40.28 73.06 105.8 190.57 2014 S. S. Sheppard, C. A. Trujillo
2014 FZ71 185 6.9 55.9 76.2 96.5 245 2014 S. S. Sheppard, C. A. Trujillo pseudo-Sednoid; ≈1:4 Neptune resonance; Neptune Mean Motion Resonance (MMR) along with the Kozai Resonance (KR) modified the eccentricity and inclination to obtain a very high perihelion
2014 FC72 509 4.5 51.670 76.329 100.99 32.85 2014 Pan-STARRS pseudo-Sednoid; ≈1:4 Neptune resonance; Neptune Mean Motion Resonance (MMR) along with the Kozai Resonance (KR) modified the eccentricity and inclination to obtain a very high perihelion
2014 JM80 352 5.5 46.00 63.00 80.01 96.1 2014 Pan-STARRS ≈1:3 Neptune resonance; Neptune Mean Motion Resonance (MMR) along with the Kozai Resonance (KR) modified the eccentricity and inclination to obtain a high perihelion
2014 JS80 306 5.5 40.013 48.291 56.569 174.5 2014 Pan-STARRS borderline classical KBO
2014 OJ394 423 5.0 40.80 52.97 65.14 271.60 2014 Pan-STARRS in 3:7 Neptune resonance
2014 QR441 193 6.8 42.6 67.8 93.0 283 2014 Dark Energy Survey
2014 SR349 202 6.6 47.6 300 540 341.1 2014 S. S. Sheppard, C. A. Trujillo
2014 SS349 134 7.6 45 140 240 148 2014 S. S. Sheppard, C. A. Trujillo ≈2:10 Neptune resonance; Neptune Mean Motion Resonance (MMR) along with the Kozai Resonance (KR) modified the eccentricity and inclination to obtain a high perihelion[7]
2014 ST373 330 5.5 50.13 104.0 157.8 297.52 2014 Dark Energy Survey
2014 UT228 154 7.3 43.97 48.593 53.216 49.9 2014 OSSOS borderline classical KBO
2014 UA230 222 6.5 42.27 55.05 67.84 132.8 2014 OSSOS
2014 UO231 97 8.3 42.25 55.11 67.98 234.56 2014 OSSOS
2014 WK509 584 4.0 40.08 50.79 61.50 135.4 2014 Pan-STARRS
2014 WB556 147 7.4 42.6 280 520 234 2014 Dark Energy Survey
2015 AL281 293 6.1 42 48 54 120 2015 Pan-STARRS borderline classical KBO

orbit very poor, might not be a detached object
Template:Mpl- 486 4.8 41.380 55.372 69.364 157.72 2015 Pan-STARRS
Template:Mpl- 352 5.5 44.82 47.866 50.909 293.2 2015 Pan-STARRS borderline classical KBO
2015 FJ345 117 7.9 51 63.0 75.2 78 2015 S. S. Sheppard, C. A. Trujillo pseudo-Sednoid; ≈1:3 Neptune resonance; Neptune Mean Motion Resonance (MMR) along with the Kozai Resonance (KR) modified the eccentricity and inclination to obtain a very high perihelion
2015 GP50 222 6.5 40.4 55.2 70.0 130 2015 S. S. Sheppard, C. A. Trujillo
2015 KH162 671 3.9 41.63 62.29 82.95 296.805 2015 S. S. Sheppard, D. J. Tholen, C. A. Trujillo
2015 KG163 101 8.3 40.502 826 1610 32.06 2015 OSSOS
2015 KH163 117 7.9 40.06 157.2 274 230.29 2015 OSSOS ≈1:12 Neptune resonance
2015 KE172 106 8.1 44.137 133.12 222.1 15.43 2015 OSSOS 1:9 Neptune resonance
2015 KG172 280 6.0 42 55 69 35 2015 R. L. Allen

D. James

D. Herrera
orbit fairly poor, might not be a detached object
2015 KQ174 154 7.3 49.31 55.40 61.48 294.0 2015 Mauna Kea (unspecified) pseudo-Sednoid; ≈2:5 Neptune resonance; Neptune Mean Motion Resonance (MMR) along with the Kozai Resonance (KR) modified the eccentricity and inclination to obtain a very high perihelion
2015 RX245 255 6.2 45.5 410 780 65.3 2015 OSSOS
Leleākūhonua 300 5.5 65.02 1042 2019 118.0 2015 S. S. Sheppard, C. A. Trujillo, D. J. Tholen Sednoid
2017 DP121 161 7.2 40.52 50.48 60.45 217.9 2017
2017 FP161 168 7.1 40.88 47.99 55.1 218 2017 borderline classical KBO
2017 SN132 97 5.8 40.949 79.868 118.786 148.769 2017 S. S. Sheppard, C. A. Trujillo, D. J. Tholen
2018 VM35 134 7.6 45.289 240.575 435.861 302.008 2018 ???

Note[modifica | modifica wikitesto]

  1. ^ a b E. L. Schaller e M. E. Brown, Volatile loss and retention on Kuiper belt objects (PDF), in Astrophysical Journal, vol. 659, n. 1, 2007, pp. I.61–I.64, Bibcode:2007ApJ...659L..61S, DOI:10.1086/516709. URL consultato il 2 aprile 2008.E. L. Schaller; M. E. Brown (2007). "Volatile loss and retention on Kuiper belt objects" (PDF). Astrophysical Journal. 659 (1): I.61–I.64. Bibcode:2007ApJ...659L..61S. doi:10.1086/516709. Retrieved 2008-04-02. Errore nelle note: Tag <ref> non valido; il nome "abc" è stato definito più volte con contenuti diversi
  2. ^ a b boulder.swri.edu, http://www.boulder.swri.edu/~buie/kbo/astrom/04VN112.html. URL consultato il 17 luglio 2008.Buie, Marc W. (8 November 2007). "Orbit Fit and Astrometric record for 04VN112". SwRI (Space Science Department). Archived from the original on 18 August 2010. Retrieved 17 July 2008. Errore nelle note: Tag <ref> non valido; il nome "VN112" è stato definito più volte con contenuti diversi
  3. ^ a b ssd.jpl.nasa.gov, http://ssd.jpl.nasa.gov/sbdb.cgi?sstr=2004VN112. URL consultato il 24 febbraio 2015."JPL Small-Body Database Browser: (2004 VN112)". Retrieved 2015-02-24. Errore nelle note: Tag <ref> non valido; il nome "jpldata04VN112" è stato definito più volte con contenuti diversi
  4. ^ a b minorplanetcenter.net, http://www.minorplanetcenter.net/iau/lists/Centaurs.html. URL consultato il 5 luglio 2011.
    «Discoverer: CTIO»
    "List Of Centaurs and Scattered-Disk Objects". Retrieved 5 July 2011. Discoverer: CTIO Errore nelle note: Tag <ref> non valido; il nome "cen_sdo" è stato definito più volte con contenuti diversi
  5. ^ R. L. Allen e B. Gladman, Discovery of a low-eccentricity, high-inclination Kuiper Belt object at 58 AU, in The Astrophysical Journal, vol. 640, n. 1, 2006, pp. L83–L86, Bibcode:2006ApJ...640L..83A, DOI:10.1086/503098, arXiv:astro-ph/0512430.
  6. ^ a b Scott S. Sheppard, Chadwick Trujillo e David J. Tholen, Beyond the Kuiper Belt Edge: New High Perihelion Trans-Neptunian Objects with Moderate Semimajor Axes and Eccentricities, in The Astrophysical Journal Letters, vol. 825, n. 1, July 2016, p. L13, Bibcode:2016ApJ...825L..13S, DOI:10.3847/2041-8205/825/1/L13, arXiv:1606.02294.Sheppard, Scott S.; Trujillo, Chadwick; Tholen, David J. (July 2016). "Beyond the Kuiper Belt Edge: New High Perihelion Trans-Neptunian Objects with Moderate Semimajor Axes and Eccentricities". The Astrophysical Journal Letters. 825 (1): L13. arXiv:1606.02294. Bibcode:2016ApJ...825L..13S. doi:10.3847/2041-8205/825/1/L13. S2CID 118630570. Errore nelle note: Tag <ref> non valido; il nome "Like Buffy" è stato definito più volte con contenuti diversi
  7. ^ a b Scott S. Sheppard e Chad Trujillo, New Extreme Trans-Neptunian Objects: Towards a Super-Earth in the Outer Solar System, in Astrophysical Journal, vol. 152, n. 6, August 2016, pp. 221, Bibcode:2016AJ....152..221S, DOI:10.3847/1538-3881/152/6/221, arXiv:1608.08772.Sheppard, Scott S.; Trujillo, Chad (August 2016). "New Extreme Trans-Neptunian Objects: Towards a Super-Earth in the Outer Solar System". Astrophysical Journal. 152 (6): 221. arXiv:1608.08772. Bibcode:2016AJ....152..221S. doi:10.3847/1538-3881/152/6/221. S2CID 119187392. Errore nelle note: Tag <ref> non valido; il nome "Like 2014SS349" è stato definito più volte con contenuti diversi
  8. ^ Lykawka, P.S. e Mukai, T., An outer planet beyond Pluto and the origin of the trans-Neptunian belt architecture, in Astronomical Journal, vol. 135, n. 4, 2008, pp. 1161–1200, Bibcode:2008AJ....135.1161L, DOI:10.1088/0004-6256/135/4/1161, arXiv:0712.2198.
  9. ^ D. Jewitt e A. Delsanti, The Solar System Beyond the Planets (PDF), in Solar System Update: Topical and Timely Reviews in Solar System Sciences, Springer-Praxisª ed., 2006, ISBN 3-540-26056-0.
  10. ^ B. Gladman, Evidence for an extended scattered disk, in Icarus, vol. 157, n. 2, 2002, pp. 269–279, Bibcode:2002Icar..157..269G, DOI:10.1006/icar.2002.6860, arXiv:astro-ph/0103435.
  11. ^ a b Rodney S. Gomes, J. Matese e Jack Lissauer, A distant planetary-mass solar companion may have produced distant detached objects, in Icarus, vol. 184, n. 2, Elsevier, 2006, pp. 589–601, Bibcode:2006Icar..184..589G, DOI:10.1016/j.icarus.2006.05.026. Errore nelle note: Tag <ref> non valido; il nome "Gomez 2006" è stato definito più volte con contenuti diversi
  12. ^ Elliot, J.L., Kern, S.D. e Clancy, K.B., The Deep Ecliptic Survey: A search for Kuiper belt objects and centaurs. II. Dynamical classification, the Kuiper belt plane, and the core population (PDF), in The Astronomical Journal, vol. 129, n. 2, 2006, pp. 1117–1162, Bibcode:2005AJ....129.1117E, DOI:10.1086/427395.
  13. ^ Lykawka, Patryk Sofia e Mukai, Tadashi, Dynamical classification of trans-neptunian objects: Probing their origin, evolution, and interrelation, in Icarus, vol. 189, n. 1, July 2007, pp. 213–232, Bibcode:2007Icar..189..213L, DOI:10.1016/j.icarus.2007.01.001.
  14. ^ Alessandro Morbidelli e Harold F. Levison, Scenarios for the Origin of the Orbits of the Trans-Neptunian Objects [[:Template:Mp]] and [[:Template:Mp]], in The Astronomical Journal, vol. 128, n. 5, November 2004, pp. 2564–2576, Bibcode:2004AJ....128.2564M, DOI:10.1086/424617, arXiv:astro-ph/0403358. Wikilink compreso nell'URL del titolo (aiuto)
  15. ^ B. Gladman, M. Holman e T. Grav, Evidence for an extended scattered disk, in Icarus, vol. 157, n. 2, 2002, pp. 269–279, Bibcode:2002Icar..157..269G, DOI:10.1006/icar.2002.6860, arXiv:astro-ph/0103435.
  16. ^ grantchronicles.com, http://www.grantchronicles.com/12thplanetmk.htm.
  17. ^ sciencenews.org, https://www.sciencenews.org/article/comets-odd-orbit-hints-hidden-planet?mode=magazine&context=293.
  18. ^ spaceref.com, http://www.spaceref.com/news/viewnews.html?id=309.
  19. ^ sciencemag.org, http://www.sciencemag.org/news/2001/03/signs-hidden-planet.
  20. ^ Phil Mozel, Dr. Brett Gladman, in Journal of the Royal Astronomical Society of Canada, A moment with ..., vol. 105, n. 2, 2011, pp. 77, Bibcode:2011JRASC.105...77M.
  21. ^ Brett Gladman e Collin Chan, Production of the Extended Scattered Disk by Rogue Planets, in The Astrophysical Journal, vol. 643, n. 2, 2006, pp. L135–L138, Bibcode:2006ApJ...643L.135G, DOI:10.1086/505214.
  22. ^ findplanetnine.com, http://www.findplanetnine.com/2016/01/the-long-and-winding-history-of-planet-x.html.
  23. ^ minorplanetcenter.net, http://minorplanetcenter.net/db_search/show_by_properties?perihelion_distance_min=40&semimajor_axis_min=47.7. URL consultato il 7 May 2018.
  24. ^ R. L. Allen e B. Gladman, Discovery of a low-eccentricity, high-inclination Kuiper Belt object at 58 AU, in The Astrophysical Journal, vol. 640, n. 1, 2006, pp. L83–L86, Bibcode:2006ApJ...640L..83A, DOI:10.1086/503098, arXiv:astro-ph/0512430.

[[Categoria:Oggetti del disco diffuso]]