t-distributed stochastic neighbor embedding

Da Wikipedia, l'enciclopedia libera.
Jump to navigation Jump to search

t-distributed stochastic neighbor embedding (t-SNE) è un algoritmo di riduzione della dimensionalità sviluppato da Geoffrey Hinton e Laurens van der Maaten, ampiamente utilizzato come strumento di machine learning in molti ambiti di ricerca.[1][2][3][4][5][6][7] È una tecnica di riduzione della dimensionalità non lineare che si presta particolarmente all'embedding di dataset ad alta dimensionalità in uno spazio a due o tre dimensioni, nel quale possono essere visualizzati tramite un grafico di dispersione. L'algoritmo modella i punti in modo che oggetti vicini nello spazio originale risultino vicini nello spazio a dimensionalità ridotta, e oggetti lontani risultino lontani, cercando di preservare la struttura locale.

L'algoritmo si articola in due fasi principali. Nella prima fase viene costruita una distribuzione di probabilità che ad ogni coppia di punti nello spazio originale ad alta dimensionalità associa un valore di probabilità elevato se i due punti sono simili, basso se sono dissimili. Quindi viene definita una seconda distribuzione di probabilità analoga, nello spazio a dimensione ridotta. L'algoritmo quindi minimizza la divergenza di Kullback-Leibler delle le due distribuzioni tramite discesa del gradiente, riorganizzando i punti nello spazio a dimensione ridotta.

Algoritmo[modifica | modifica wikitesto]

Dato un insieme di oggetti in uno spazio ad alta dimensionalità, t-SNE costruisce una distribuzione di probabilità , simmetrica nelle due variabili e proporzionale alla similarità tra i punti e , definita come:[8][1]

dove

L'ampiezza delle gaussiane è scelta in maniera tale che la perplessità della distribuzione condizionale uguagli un valore di perplessità fornito come iperparametro dell'algoritmo. In questo modo, l'ampiezza si adatta alla densità dei punti, con valori di minori in aree ad alta densità.

t-SNE cerca di costruire una mappa -dimensionale (con ) i cui punti riflettano il meglio possibile la similarità nello spazio di partenza. Allo scopo, la similarità tra due punti e nello spazio a dimensionalità ridotta viene definita come:

La differenza principale è l'uso nello spazio a dimensionalità ridotta di una distribuzione t di Student con un grado di libertà al posto della gaussiana, le cui code pesanti consentono di modellare meglio la dissimilarità tra oggetti distanti. La posizione dei punti nello spazio a dimensione ridotta è quindi calcolata minimizzando tramite discesa del gradiente la divergenza di Kullback-Leibler della distribuzione rispetto a :

L'uso della divergenza di Kullback-Leibler come funzione obiettivo consente di avere penalità elevate se punti vicini nello spazio originale ( elevato) vengono considerati lontani nello spazio a dimensionalità ridotta ( piccolo), mentre il viceversa ha un'influenza minore, tendendo quindi a preservare la struttura locale della distribuzione dei punti. Il risultato è una mappa a bassa dimensionalità che riflette le similarità tra i punti nello spazio ad alta dimensionalità.

Note[modifica | modifica wikitesto]

  1. ^ a b L.J.P. van der Maaten e Hinton, G.E., Visualizing High-Dimensional Data Using t-SNE (PDF), in Journal of Machine Learning Research, vol. 9, Nov 2008, pp. 2579–2605.
  2. ^ I. Gashi, Stankovic, V., Leita, C. e Thonnard, O., An Experimental Study of Diversity with Off-the-shelf AntiVirus Engines, in Proceedings of the IEEE International Symposium on Network Computing and Applications, 2009, pp. 4–11.
  3. ^ P. Hamel e Eck, D., Learning Features from Music Audio with Deep Belief Networks, in Proceedings of the International Society for Music Information Retrieval Conference, 2010, pp. 339–344.
  4. ^ A.R. Jamieson, Giger, M.L., Drukker, K., Lui, H., Yuan, Y. e Bhooshan, N., Exploring Nonlinear Feature Space Dimension Reduction and Data Representation in Breast CADx with Laplacian Eigenmaps and t-SNE, in Medical Physics, vol. 37, nº 1, 2010, pp. 339–351, DOI:10.1118/1.3267037.
  5. ^ I. Wallach e Liliean, R., The Protein-Small-Molecule Database, A Non-Redundant Structural Resource for the Analysis of Protein-Ligand Binding, in Bioinformatics, vol. 25, nº 5, 2009, pp. 615–620, DOI:10.1093/bioinformatics/btp035, PMID 19153135.
  6. ^ J. Birjandtalab, M. B. Pouyan e M. Nourani, Nonlinear dimension reduction for EEG-based epileptic seizure detection, in 2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), 1º febbraio 2016, pp. 595–598, DOI:10.1109/BHI.2016.7455968.
  7. ^ Visualizing Representations: Deep Learning and Human Beings Christopher Olah's blog, 2015
  8. ^
    (EN)

    « The similarity of datapoint to datapoint is the conditional probability, , that would pick as its neighbor if neighbors were picked in proportion to their probability density under a Gaussian centered at . »

    (IT)

    « La similarità del punto rispetto al punto è la probabilità condizionata, , che scelga come suo vicino se i vicini venissero generati casualmente secondo una distribuzione di probablità Gaussiana centrata in . »

Collegamenti esterni[modifica | modifica wikitesto]

Informatica Portale Informatica: accedi alle voci di Wikipedia che trattano di informatica