Tensore metrico: differenze tra le versioni

Da Wikipedia, l'enciclopedia libera.
Vai alla navigazione Vai alla ricerca
Contenuto cancellato Contenuto aggiunto
Riga 15: Riga 15:
Se la segnatura è di tipo <math>(n,0)</math>, cioè se il prodotto scalare è ovunque [[prodotto scalare definito positivo|definito positivo]], il tensore induce una [[spazio metrico|metrica]] sulla varietà, che è quindi chiamata [[varietà riemanniana]]. Se il tensore non è definito positivo, la varietà è detta [[varietà pseudo-riemanniana|pseudo-riemanniana]].
Se la segnatura è di tipo <math>(n,0)</math>, cioè se il prodotto scalare è ovunque [[prodotto scalare definito positivo|definito positivo]], il tensore induce una [[spazio metrico|metrica]] sulla varietà, che è quindi chiamata [[varietà riemanniana]]. Se il tensore non è definito positivo, la varietà è detta [[varietà pseudo-riemanniana|pseudo-riemanniana]].


Le varietà riemanniane sono le più studiate in [[geometria differenziale]]. Localmente, una varietà riemanniana è simile ad uno [[spazio euclideo]], benché possa essere globalmente molto differente. D'altro canto, lo [[spaziotempo]] nella [[relatività generale]] è descritto come una particolare varietà pseudoriemanniana, con segnatura <math>(1,3)</math>. Una tale varietà è localmente simile allo [[spaziotempo di Minkiowski]].
Le varietà riemanniane sono le più studiate in [[geometria differenziale]]. Localmente, una varietà riemanniana è simile ad uno [[spazio euclideo]], benché possa essere globalmente molto differente. D'altro canto, lo [[spaziotempo]] nella [[relatività generale]] è descritto come una particolare varietà pseudoriemanniana, con segnatura <math>(1,3)</math>. Una tale varietà è localmente simile allo [[spaziotempo di Minkowski]].


== Esempi ==
== Esempi ==

Versione delle 08:35, 8 feb 2010

In matematica, e più precisamente in geometria differenziale, il tensore metrico è un campo tensoriale che caratterizza la geometria di una varietà. Tramite il tensore metrico è possibile definire le nozioni di distanza, angolo, lunghezza di una curva, geodetica, curvatura.

Definizioni

Prodotto scalare non degenere in ogni punto

Un tensore metrico è un campo tensoriale definito su una varietà differenziabile, di tipo , simmetrico e non degenere in ogni punto.

Il tensore definisce quindi in ogni punto un prodotto scalare non degenere fra i vettori dello spazio tangente nel punto.

Coordinate

Il tensore è indicato in coordinate come . Per ogni punto della varietà, fissato una carta locale, il tensore in è rappresentato quindi da una matrice simmetrica con determinante diverso da zero. Come tutti i campi tensoriali, la matrice cambia in modo differenziabile al variare di all'interno della carta.

Segnatura

Poiché il determinante non si annulla mai, la segnatura della matrice è la stessa per ogni se la varietà è connessa.

Se la segnatura è di tipo , cioè se il prodotto scalare è ovunque definito positivo, il tensore induce una metrica sulla varietà, che è quindi chiamata varietà riemanniana. Se il tensore non è definito positivo, la varietà è detta pseudo-riemanniana.

Le varietà riemanniane sono le più studiate in geometria differenziale. Localmente, una varietà riemanniana è simile ad uno spazio euclideo, benché possa essere globalmente molto differente. D'altro canto, lo spaziotempo nella relatività generale è descritto come una particolare varietà pseudoriemanniana, con segnatura . Una tale varietà è localmente simile allo spaziotempo di Minkowski.

Esempi

Metrica euclidea

Lo spazio euclideo è dotato della metrica euclidea, che può essere descritta da un tensore metrico . Lo spazio tangente di ogni punto è identificato naturalmente con . Rispetto a questa identificazione, il tensore è la matrice identità per ogni punto dello spazio.

Varietà immersa

Sia una varietà differenziabile in . Il tensore metrico euclideo induce un tensore metrico su : si tratta dello stesso prodotto scalare, ristretto in ogni punto di al sottospazio dei vettori tangenti a . Poiché il tensore euclideo è definito positivo, lo è anche il tensore indotto, e quindi ogni varietà immersa in ha una struttura di varietà riemanniana.

Ad esempio, il tensore indotto sulla sfera, scritto in coordinate sferiche , è dato da

e può essere riassunto nella forma

Spaziotempo di Minkiowski

Lo spaziotempo di Minkiowski è lo spazio (formato da 3+1 coordinate)dotato del tensore

che può essere riassunto nella forma

Indici di un tensore

Tensore metrico coniugato

Al tensore metrico è associato un analogo tensore di tipo , denotato con la stessa lettera ma con gli indici in alto . Il tensore è definito in coordinate come la matrice inversa di (questa definizione non dipende dalla scelta delle coordinate; in alcuni contesti si effettua anche la trasposta). Questo tensore è detto a volte tensore metrico coniugato. La relazione fra i due tensori può essere scritta nel modo seguente:

scritta con la notazione di Einstein, dove il tensore è la delta di Kronecker definita da

Alzamento e abbassamento di indici

Un tensore metrico, oltre ad introdurre concetti geometrici come lunghezze e angoli, permette di semplificare alcune notazioni e strutture. Tramite il tensore è possibile identificare gli spazi tangente e cotangente di una varietà.

Più in generale, il tensore metrico può essere utilizzato per "abbassare" o "alzare" gli indici a piacimento in un tensore, trasformando ad esempio vettori in covettori e viceversa. Questo viene fatto contraendo opportunamente con i tensori e . Ad esempio, un vettore viene trasformato in un covettore

Alternativamente,

Voci correlate


  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica