Metodo dei nodi

Da Wikipedia, l'enciclopedia libera.

Si definisce Metodo dei nodi o più propriamente Metodo dei potenziali ai nodi il procedimento risolutivo per circuiti di bipoli, sia in regime stazionario che sinusoidale, per determinare tutti i potenziali ai nodi del circuito, si può applicare solo a reti con generatori di corrente e componenti ad ammettenza, quindi non ad esempio a reti con generatori di tensione ideali, per questi è però possibile utilizzare il metodo dei potenziali ai nodi modificato.

Il vantaggio principale del metodo ai potenziali ai nodi è che per una rete con N nodi e L lati richiede la soluzione di solo N - 1 equazioni (contro le (N-1) equazioni ai nodi e le L - (N - 1) equazioni alle maglie ottenute applicando direttamente le leggi di Kirchhoff).

Esempio[modifica | modifica wikitesto]

Metodo dei potenziali ai nodi.png

La rete in figura è composta da bipoli lineari, due generatori di corrente e cinque resistori, è quindi possibile applicare il metodo dei potenziali ai nodi. Si sceglie un nodo arbitrariamente (nel disegno il nodo in basso) e lo si assume come potenziale di riferimento, ora sono le tensioni tra i nodi 1 2 3 e il nodo di riferimento.

È possibile scrivere ogni corrente incognita della rete in funzione di , è la corrente passante per e è la conduttanza della resistenza

applicando la Legge di Kirchhoff ai nodi sappiamo che

che combinato con le relazioni trovate prima per le correnti incognite

riordinando il sistema per

queste sono tre equazioni linearmente indipendenti di tre variabili non resta che risolvere il sistema e trovare le tensioni ai nodi da cui si ricavano tutte le correnti incognite. In regime sinusoidale il metodo è analogo utilizza il calcolo simbolico e le ammettenze invece delle conduttanze.

Caso generale[modifica | modifica wikitesto]

La rete ha n nodi, siano le tensioni ai nodi il metodo dei potenziali ai nodi consiste nel risolvere il sistema in forma matriciale

dove

conduttanze che convergono al nodo

conduttanze tra il nodo e il nodo

correnti dei generatori di corrente che convergono al nodo

Metodo dei potenziali ai nodi modificato[modifica | modifica wikitesto]

Esiste un'estensione al metodo dei potenziali ai nodi che permette di risolvere circuiti con generatori ideali di tensione, tale metodo però richiede la soluzione di un sistema di equazioni dove è il numero di generatori ideali di tensione per cui è vantaggioso fintanto che < L , [visto che le EKT sono L+(N-1) e le equazioni dei potenziali di nodo sono (N-1)]

Esempio[modifica | modifica wikitesto]

Network1.png

Per prima cosa è conveniente sostituire tutti i generatori di tensione reali (cioè in serie con una resistenza) con i rispettivi generatori equivalenti di Norton, nel nostro caso il nuovo generatore

Network2.png

ora si scrivono tutte le equazioni ai nodi in funzione delle tensioni e della corrente incognita che attraversa il generatore . A queste equazioni va aggiunta l'equazione che lega la tensione generata da con i potenziali ai suoi capi.

riordinando per e scrivendo in forma matriciale

e non resta che risolvere il sistema.

Voci correlate[modifica | modifica wikitesto]

Elettrotecnica Portale Elettrotecnica: accedi alle voci di Wikipedia che trattano di elettrotecnica