Ipocicloide

Da Wikipedia, l'enciclopedia libera.
Jump to navigation Jump to search

L'ipocicloide è una curva piana appartenente alla categoria delle rullette ovvero delle curve generate da una figura che rotola su di un'altra. L'ipocicloide infatti è definita come la curva generata da un punto di una circonferenza che rotola sulla parte interna di un'altra circonferenza. Essa è un caso particolare di ipotrocoide.

Forma matematica[modifica | modifica wikitesto]

Due ipocicloidi. La prima ha un rapporto a/b pari a 5/3 ed è una curva chiusa con 5 cuspidi. La seconda ha un rapporto fra i raggi irrazionale (1/ √ 2) ed è una curva aperta con un numero infinito di cuspidi (solo una parte del grafico è mostrata).

La rappresentazione parametrica di un'ipocicloide generata da una circonferenza di raggio che rotola su di una circonferenza di raggio (con ) è data da:


.

L'ipocicloide è una funzione continua ed è differenziabile ovunque tranne sulle cuspidi.

Se è un numero razionale allora l'ipocicloide è una curva chiusa con cuspidi. In particolare se allora l'ipocicloide ha cuspidi, mentre se allora l'ipocicloide ha un numero di cuspidi pari al numeratore della frazione ai minimi termini che deriva da (quindi supponendo abbiamo esattamente cuspidi). Se invece è un numero irrazionale la curva non si chiude mai.

Esempi di ipocicloidi. Nelle prime tre righe sono rappresentate ipocicloidi con un rapporto tra a e b razionale, invece, nell'ultima riga il rapporto tra a e b è irrazionale. Al primo gruppo appartengono tutte ipocicloidi chiuse, al secondo tutte ipocicloidi aperte.

Voci correlate[modifica | modifica wikitesto]

Altri progetti[modifica | modifica wikitesto]

Collegamenti esterni[modifica | modifica wikitesto]

Matematica Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica