Assiomi di Kolmogorov

Da Wikipedia, l'enciclopedia libera.
Jump to navigation Jump to search

Gli assiomi di Kolmogorov sono una parte fondamentale della teoria della probabilità di Andrey Kolmogorov. In essi, la probabilità P di qualche evento E, indicata come , è definita in modo da soddisfare questi assiomi. Gli assiomi sono descritti di seguito.

Questi assiomi possono essere riassunti come segue: Sia (Ω, FP) uno spazio mensurale con P(Ω) = 1. Allora (Ω, FP) è lo spazio delle probabilità, con spazio campionario Ω, spazio degli eventi F e misura della probabilità P.

Un approccio alternativo alla formalizzazione della probabilità, proposto da alcuni bayesiani, è dato dal teorema di Cox .

Assiomi[modifica | modifica wikitesto]

Primo assioma[modifica | modifica wikitesto]

La probabilità di un evento è un numero reale non negativo:

dove è lo spazio degli eventi. Segue che è sempre finito, in contrasto con la più generale teoria della misura. Teoria che assegna probabilità negativa in relazione al primo assioma.

Secondo assioma[modifica | modifica wikitesto]

La probabilità dell'intero spazio campione è 1 (Ipotesi della misura unitaria)

Terzo assioma[modifica | modifica wikitesto]

Qualsiasi sequenza numerabile di insiemi disgiunti (sinonimo di eventi reciprocamente esclusivi) soddisfa

Alcuni autori considerano unicamente spazi di probabilità puramente additivi, in tal caso è necessaria solo un'algebra di insiemi, piuttosto che una σ-algebra .

Conseguenze[modifica | modifica wikitesto]

Dagli assiomi di Kolmogorov si possono dedurre altre regole utili per il calcolo delle probabilità.

La probabilità dell'insieme vuoto[modifica | modifica wikitesto]

In alcuni casi, non è l'unico evento con probabilità 0.

Monotonicità[modifica | modifica wikitesto]

Se A è un sottoinsieme di B, o uguale a B, allora la probabilità di A è inferiore o uguale alla probabilità di B.

L'intervallo di definizione[modifica | modifica wikitesto]

Segue immediatamente dalla proprietà di monotonicità che

Ulteriori conseguenze[modifica | modifica wikitesto]

Un'altra proprietà importante è:

Questa è chiamata la legge addizionale della probabilità, o la regola della somma. Cioè, la probabilità che accada o A o B, è la somma delle probabilità che A accada e che B accada, meno la probabilità che accadranno sia A che B. La dimostrazione di ciò è:

In primo luogo,

(per il terzo Assioma)

Quindi,

(perché ).

E,

sottraendo da entrambe le equazioni otteniamo il risultato voluto.

Un'estensione della legge addizionale a qualsiasi numero di insiemi è il principio di inclusione-esclusione .

Chiamando B come complemento A c di A nella legge addizionale si ottiene

Cioè, la probabilità che un evento non accada (o il complemento dell'evento) è 1 meno la probabilità che accada.

Esempio semplice: lancio della moneta[modifica | modifica wikitesto]

Prendiano in considerazione il lancio di una singola moneta e presumiamo che esca o testa (T) o croce (C) (ma non entrambe). Non ipotizza che la moneta sia bilanciata.

Possiamo definire:

Gli assiomi di Kolmogorov implicano che:

La probabilità di non avere testa o croce è 0.

La probabilità di una testa o croce, è 1.

La somma della probabilità delle teste e delle croci è 1.

Voci correlate[modifica | modifica wikitesto]

Ulteriori letture[modifica | modifica wikitesto]

Collegamenti esterni[modifica | modifica wikitesto]