Teoria della detezione del segnale
La teoria della detezione del segnale o teoria della rilevazione è un metodo per quantificare l'abilità di distinguere, in un segnale, il segnale vero e proprio portatore di informazioni dal rumore.
Gli inizi della ricerca furono effettuati da tecnici radar[1]. La teoria sugli aspetti psicologici vide le sue prime pubblicazioni ad opera di Wilson P. Tallner e John A. Swets nel 1954[2].
Usi
[modifica | modifica wikitesto]La teoria si applica su diversi campi come i vari tipi di diagnostica, nel quale risulta fondamentale ricevere un segnale preciso e pulito, sul controllo qualità, nel campo delle telecomunicazioni e nella psicologia. L'idea è simile a quella alla base del rapporto segnale/rumore utilizzato in campi scientifici ed è usata anche nel campo della gestione degli allarmi nel quale è importante che l'apparato distingua efficacemente solo gli stimoli corretti.
Formalizzazione
[modifica | modifica wikitesto]A partire da un'osservazione , nel caso in cui si debba prendere una decisione tra le due ipotesi:
- segnale assente,
- segnale presente
Per poter applicare la teoria della rivelazione ad un insieme di dati dove i segnali sono sia presenti che assenti, e l'osservatore deve identificare, in ogni prova, la presenza o l'assenza del segnale, gli studiosi hanno schematizzato le varie situazioni che possono presentarsi
Risposta "Segnale assente" Risposta "Segnale presente" Segnale presente Segnale non rivelato Segnale ricevuto Segnale assente Reazione corretta Falso allarme
Criterio MAP
[modifica | modifica wikitesto]L'approccio classico è quello di scegliere quando e nel caso contrario[3]. Usualmente ciò che si conosce sono le probabilità condizionate, e , e le probabilità a priori e . Quindi, per il teorema di Bayes:
- ,
dove p(y) è la probabilità totale dell'evento y,
- .
è la scelta effettuata nel caso in cui
e nel caso contrario.
Spesso, il rapporto è indicato con il simbolo e il rapporto è chiamato rapporto di verosimiglianza.
Usando questa terminologia, è scelta nel caso .
Questo criterio è chiamato "Criterio della Massima Probabilità A Posteriori" (MAP).
Criterio di Bayes
[modifica | modifica wikitesto]In alcuni casi è più importante rispondere appropriatamente nell'ipotesi di quanto lo sia nell'ipotesi . Per esempio, se si sta provando a rivelare la presenza di un bombardiere che trasporta un'arma nucleare, è molto più importante abbattere il bombardiere se è presente, di quanto non lo sia inviare uno squadrone di aerei da caccia per ispezionare un falso allarme (assumendo un'alta disponibilità di squadroni di aerei da caccia). Il criterio di Bayes è un approccio utile per questi casi [3].
Una misura di utilità è associata ad ognuna delle quattro seguenti situazioni:
- : Si risponde appropriatamente ad ed è vero (l'aereo da caccia distrugge il bombardiere);
- : Si risponde appropriatamente ad ma è vero: gli aerei da caccia sono inviati inutilmente
- : Si risponde appropriatamente ad ma è vero: il bombardiere distrugge la città senza essere individuato;
- : Si risponde appropriatamente ad e è vero: gli aerei da caccia non vengono inviati e il bombardiere non è nell'area controllata;
Come mostrato, ciò che conta sono le differenze e .
Similmente ci sono quattro probabilità , , etc., per ognuno dei casi (che dipendono dalla specifica strategia di decisione).
L'approccio del criterio di Bayes è quello di massimizzare l'utilità attesa:
Allora, può essere massimizzata la somma
- ,
e attraverso le seguenti sostituzioni
in cui e sono le probabilità a priori e , e è la regione di decisione degli eventi in osservazione, y, a cui si risponde correttamente nel caso in cui sia vero.
e quindi sono massimizzati estendendo sulla regione in cui
Ciò è realizzato scegliendo nel caso
e altrimenti, in cui è il cosiddetto rapporto di verosimiglianza.
Applicazioni in psicologia
[modifica | modifica wikitesto]La teoria della detezione del segnale, in inglese SDT (Signal Detection Theory) è usata dagli psicologi ogniqualvolta devono misurare il modo con cui un soggetto prende le decisioni in condizioni di incertezza, per esempio nello studio delle stime nella valutazione della distanza in caso di nebbia. La teoria oltre a descrivere un numero di determinanti psicologiche di come sia possibile localizzare e purificare il segnale, descrive anche come si modificano le varie soglie di percezione, le quali sono influenzate da fattori come l'aspettativa, l'esperienza, lo stato psicologico (ad esempio una sentinella in tempo di guerra probabilmente riuscirà a captare un suono più lontano e remoto rispetto ad una in tempo di pace).
La SDT stabilisce che il soggetto che prende la decisione non si comporta come un ricevitore passivo di informazioni, ma come un attivo "decisore" che elabora giudizi complicati in condizioni di incertezza e rielabora i dati da lui ricevuti. In caso di nebbia, il soggetto è forzato a decidere quanto sia lontano da lui un determinato oggetto, basandosi esclusivamente da un segnale, che proviene dalla vista, in cui è presente un rumore (la nebbia) che altera la percezione iniziale. Poiché il cervello utilizza la luminosità degli oggetti, ad esempio le luci dei semafori, per valutare la distanza dell'oggetto, la nebbia, diminuendo la luminosità, fa apparire il semaforo molto più distante di quanto esso sia.
Sensibilità o capacità di discriminazione
[modifica | modifica wikitesto]Essenzialmente, la sensitività si riferisce a quanto sia semplice o difficile individuare un segnale specifico nello sfondo. Per esempio, studiando, risulta più semplice ricordare parole che sono state viste o udite in precedenza. Al contrario, ricordarsi 30 parole è più difficile che ricordarne 5 e rende la discriminazione più difficile.
Uno dei metodi statistici più usati per il calcolo della sensibilità è il 'd test, ma sono utilizzate anche misurazioni senza parametri.
Il pregiudizio
[modifica | modifica wikitesto]Il pregiudizio è la misura in cui una data risposta è più probabile di un'altra. Per esempio, un ricevitore può rispondere maggiormente di aver captato il segnale o di non averlo captato, indipendentemente dalla reale presenza dello stesso. Per esempio, se c'è una penalità per il ricevitore quando non si accorge della presenza del segnale o quando produce un falso allarme, ciò può influenzare il pregiudizio; se il segnale è una bomba e quindi in caso di "segnale perso" può incrementare considerevolmente la probabilità di morte, un pregiudizio su "falso allarme" è normale. Al contrario, falsi allarmi troppo frequenti tendono, nel tempo, a modificare le persone, con pregiudizio rivolto verso "Segnale perso".
Note
[modifica | modifica wikitesto]- ^ Si veda Marcum, pag. 90
- ^ Si veda Wilson and Tanner, pag. 401 - 409
- ^ a b Schonhoff, T.A. and Giordano, A.A. (2006) Detection and Estimation Theory and Its Applications. New Jersey: Pearson Education (ISBN 0-13-089499-0)
Bibliografia
[modifica | modifica wikitesto]- Gaetano Scarano, Segnali, Processi Aleatori, Stima, Roma, Sapienza - Università di Roma, 2009.
- (EN) Steven M. Kay, Fundamentals of Statistical Signal Processing: Detection Theory, 1993.
- (EN) J. I. Marcum, A Statistical Theory of Target Detection by Pulsed Radar, in The Research Memorandum, 1947. URL consultato il 28 giugno 2009.
- (EN) Wilson P. Tanner Jr., John A. Swets, A decision-making theory of visual detection., in Psychological Review., vol. 61, n. 6, 1954-11. URL consultato il 24 giugno 2009.
Voci correlate
[modifica | modifica wikitesto]- Verifica d'ipotesi
- Teoria della stima
- Errore di primo tipo
- CFAR
- Rapporto di verosimiglianza
- Lemma fondamentale di Neyman-Pearson
Altri progetti
[modifica | modifica wikitesto]- Wikimedia Commons contiene immagini o altri file su Teoria della detezione del segnale