Utente:Grasso Luigi/sandbox4/Curva integrale

Da Wikipedia, l'enciclopedia libera.
Vai alla navigazione Vai alla ricerca
Tre curve integrali per un campo direzionale dell'equazione differenziale dy / dx = x2 − x − 2.

In matematica, una curva integrale è una curva parametrica che rappresenta una soluzione particolare di un'equazione differenziale ordinaria o sistemi di equazioni. Se l'equazione differenziale viene rappresentata come un campo vettoriale o campo direzionale, allora le curve integrali corrispondenti sono tangenti al campo in ogni punto.

Le curve integrali sono conosciute con vari altri nomi, a seconda della natura e dell'interpretazione dell'equazione differenziale o del campo vettoriale. In fisica, le curve integrali per un campo elettrico o un campo magnetico sono conosciute come linee di campo, e quelle di un campo velocità di un fluido sono dette linee di flusso. Nei sistemi dinamici, le curve integrali per l'equazione differenziale che descrive un sistema sono dette traiettorie o orbite.

Definizione[modifica | modifica wikitesto]

Suppose that F is a vector field: that is, a vector-valued function with Cartesian coordinates (F1,F2,...,Fn); and x(t) a parametric curve with Cartesian coordinates (x1(t),x2(t),...,xn(t)). Then x(t) is an integral curve of F if it is a solution of the following autonomous system of ordinary differential equations:

Such a system may be written as a single vector equation

This equation says that the vector tangent to the curve at any point x(t) along the curve is precisely the vector F(x(t)), and so the curve x(t) is tangent at each point to the vector field F.

If a given vector field is Lipschitz continuous, then the Picard–Lindelöf theorem implies that there exists a unique flow for small time.

Generalizzazione a varietà differenziabili[modifica | modifica wikitesto]

Definizione[modifica | modifica wikitesto]

Let M be a Banach manifold of class Cr with r ≥ 2. As usual, TM denotes the tangent bundle of M with its natural projection πM : TMM given by

A vector field on M is a cross-section of the tangent bundle TM, i.e. an assignment to every point of the manifold M of a tangent vector to M at that point. Let X be a vector field on M of class Cr−1 and let pM. An integral curve for X passing through p at time t0 is a curve α : JM of class Cr−1, defined on an open interval J of the real line R containing t0, such that

Relazione con equazioni differenziali ordinarie[modifica | modifica wikitesto]

The above definition of an integral curve α for a vector field X, passing through p at time t0, is the same as saying that α is a local solution to the ordinary differential equation/initial value problem

It is local in the sense that it is defined only for times in J, and not necessarily for all tt0 (let alone tt0). Thus, the problem of proving the existence and uniqueness of integral curves is the same as that of finding solutions to ordinary differential equations/initial value problems and showing that they are unique.

Osservazioni sulla derivata temporale[modifica | modifica wikitesto]

In the above, α′(t) denotes the derivative of α at time t, the "direction α is pointing" at time t. From a more abstract viewpoint, this is the Fréchet derivative:

In the special case that M is some open subset of Rn, this is the familiar derivative

where α1, ..., αn are the coordinates for α with respect to the usual coordinate directions.

The same thing may be phrased even more abstractly in terms of induced maps. Note that the tangent bundle TJ of J is the trivial bundle J × R and there is a canonical cross-section ι of this bundle such that ι(t) = 1 (or, more precisely, (t, 1)) for all tJ. The curve α induces a bundle map α : TJ → TM so that the following diagram commutes:

Then the time derivative α′ is the composition α′ = α o ι, and α′(t) is its value at some point t ∈ J.

Note[modifica | modifica wikitesto]

  • Serge Lang, Differential manifolds, Reading, Mass.–London–Don Mills, Ont., Addison-Wesley Publishing Co., Inc., 1972.

Altri progetti[modifica | modifica wikitesto]

  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica