Test di Shapiro-Wilk

Da Wikipedia, l'enciclopedia libera.

Il test di Shapiro-Wilk è un test per la verifica di ipotesi statistiche ed è considerato in letteratura uno dei test più potenti per la verifica della normalità, soprattutto per piccoli campioni. Venne introdotto nel 1965 da Samuel Shapiro e Martin Wilk.

La verifica della normalità avviene confrontando due stimatori alternativi della varianza :

dove

  • x(i) (indice i incluso tra parentesi) è l'i-esimo valore più piccolo (rango i) del campione
  • è la media aritmetica del campione
  • e le costanti ai sono date da
dove
e m1, ..., mn sono i valori attesi dei ranghi di un numero casuale standardizzato, e V è la matrice delle covarianze di questi ranghi.

La statistica W può assumere valori da 0 a 1. Qualora il valore della statistica W sia troppo piccolo, il test rifiuta l'ipotesi nulla che i valori campionari siano distribuiti come una variabile casuale normale.

I pesi per la combinazione lineare sono disponibili su apposite tavole. La statistica W può essere interpretata come il quadrato del coefficiente di correlazione in un diagramma quantile-quantile.

Bibliografia[modifica | modifica wikitesto]

  • Sam S. Shapiro, Martin Bradbury Wilk (1965). "An analysis of variance test for normality (complete samples)", Biometrika, 52, 3 e 4, pagine 591-611.

Voci correlate[modifica | modifica wikitesto]