Discussione:Esperienza di Eötvös

Da Wikipedia, l'enciclopedia libera.
Vai alla navigazione Vai alla ricerca

Parte non tradotta[modifica wikitesto]

Nella voce era presente un testo in inglese che non è presente nella voce corrispondente inglese, e che, IMO, non è da inserire in questa voce, ma in un altra; ho inserito una parte in ad esempio parte in principio di equivalenza, ricopio il resto qui sotto. --Omino di carta (msg) 20:48, 7 feb 2009 (CET)[rispondi]


Loaded Eötvös balance rotor hanging (top) from a tungsten filament 1/4 the diameter of a human hair. All surfaces are gold plated to dissipate static electricity.


Eötvös experiments are rational inquiries. Noether's theorem: For each continuous symmetry in physics there must be a conserved observable, and vice-versa. A list of symmetries (easy) is then a list of fundamental properties (otherwise difficult to identify) to be tested.

Internal symmetries' observables transform fields amongst themselves leaving physical states (translation, rotation) invariant. Internal symmetries' observables are default null results in any Eötvös experiment.

Parity is unique for being absolutely discontinuous, a mirror reflection along each axis. Parity is not a Noetherian symmetry. Covariance with respect to reflection in space and time is not required by the Poincaré group of Special Relativity or the Einstein group of General Relativity. Parity Eötvös experiment net output may be observed without contradicting orthodox theory or prior observations in any venue at any scale.

Class Invariance Conserved quantity
Proper orthochronous
Lorentz symmetry
translation in time
  (homogeneity)
energy
translation in space
  (homogeneity)
linear momentum
rotation in space
  (isotropy)
angular momentum
Discrete symmetry P, coordinates' inversion spatial parity
C, charge conjugation charge parity
T, time reversal time parity
CPT product of parities
Internal symmetry (independent of
spacetime coordinates)
U(1) gauge transformation electric charge
U(1) gauge transformation lepton generation number
U(1) gauge transformation hypercharge
U(1)Y gauge transformation weak hypercharge
U(2) [U(1)xSU(2)] electroweak force
SU(2) gauge transformation isospin
SU(2)L gauge transformation weak isospin
PxSU(2) G-parity
SU(3) "winding number" baryon number
SU(3) gauge transformation quark color
SU(3) (approximate) quark flavor
S((U2)xU(3))
[U(1)xSU(2)xSU(3)]
Standard Model

Beryllium-magnesium and beryllium-titanium test mass contrasts respectively give 0.1919% and 0.2398% difference/average nuclear binding energies. Beryllium-magnesium gives 0.2397% difference/average baryon number divergence. These are among the largest net active mass composition Eötvös experiments possible. 420+ years of Equivalence Principle tests have given zero net output within experimental error. The largest possible amplitude Eötvös experiment is a parity Eötvös experiment - challenging spacetime geometry with test mass geometry.

Test Masses' Divergent Property Fraction of Rest Mass
rest mass
100%
crystal lattice
geometric parity
99.9726%a alpha-Quartz
99.9771%a Cinnabar
nuclear binding energy (low Z) 00.76% (4He)
neutron versus proton mass 00.14%
electrostatic nuclear repulsion 00.06%
electron mass 00.03%
unpaired spin mass 00.005% (55Mnb)
nuclear antiparticle exchange 00.00001%
Weak Force interactions 00.0000001%
Gravitational binding energy,
Nordtvedt effect and
lunar laser ranging
00.000000046% Earthc
00.0000000019% Moon

a(nuclear mass)/(atomic mass), corrected for isotopic abundance
bglobally aligned undecatiplet
ciron core rather than homogeneous body

Chemically identical, opposite parity mass distributions have never been tested in an Eötvös experiment. Do metaphoric left and right shoes vacuum free fall along identical trajectories? A parity Eötvös experiment opposes crystallographic opposite parity space groups P3121 (right-handed screw axes) and P2221 (left-handed screw axes) cultured alpha-quartz (average atomic weight = 20.03) or cinnabar (average atomic weight = 116.33) solid single crystal spheres or other solid convex shapes with all identical moments of inertia (no directional bias).

General relativity (postulated) and string theory (BRST invariance demanded) require parity Eötvös experiment zero net output. Affine (Einstein-Cartan theory), teleparallelism (Weitzenböck), and noncommutative (Connes) gravitation theories predict measurable parity Eötvös experiment output. If the vacuum is reproducibly demonstrated to contain a chiral anisotropic background then angular momentum need not be conserved for opposite parity mass distributions (Noether's theorem). Lorentz invariance would be broken.


Collegamenti esterni modificati[modifica wikitesto]

Gentili utenti,

ho appena modificato 3 collegamento/i esterno/i sulla pagina Esperienza di Eötvös. Per cortesia controllate la mia modifica. Se avete qualche domanda o se fosse necessario far sì che il bot ignori i link o l'intera pagina, date un'occhiata a queste FAQ. Ho effettuato le seguenti modifiche:

Fate riferimento alle FAQ per informazioni su come correggere gli errori del bot

Saluti.—InternetArchiveBot (Segnala un errore) 22:52, 30 nov 2017 (CET)[rispondi]