Utente:Nick84/sandbox

Da Wikipedia, l'enciclopedia libera.
Vai alla navigazione Vai alla ricerca
Disambiguazione – Se stai cercando il racconto di Larry Niven, vedi Stella di neutroni.
Spaccato di una stella di neutroni

Una stella di neutroni è una stella compatta il cui peso è sostenuto dalla pressione di neutroni liberi. Si tratta di una cosiddetta stella degenere.

I neutroni sono costituenti del nucleo atomico e sono così chiamati in quanto elettricamente neutri. A differenza dei protoni, essi possono essere uniti a formare enormi nuclei fino a diverse volte la massa del Sole. Le stelle di neutroni sono state i primi oggetti astronomici notevoli a essere predetti teoricamente (nel 1933) ed, in seguito, scoperti (nel 1968 come pulsar).


Descrizione[modifica | modifica wikitesto]

Rappresentazione di una stella di neutroni e del suo intenso campo magnetico
Disco di accrescimento di una stella di neutroni

Le stelle di neutroni hanno una massa simile a quella del Sole, sebbene il loro raggio sia di qualche decina di chilometri, vale a dire diversi ordini di grandezza inferiore.

La loro massa è perciò impacchettata in un volume di 70000×103, circa 1014 volte più piccolo e la densità media è quindi 1014 volte più alta. Tali valori di densità sono i più alti conosciuti e impossibili da riprodurre in laboratorio (a titolo esemplificativo, per riprodurre una densità pari a quella dell'oggetto in questione occorrerebbe comprimere una portaerei nello spazio occupato da un granello di sabbia). Si tratta di una densità simile a quella dei nuclei atomici, ma estesa per decine di chilometri. In effetti le stelle di neutroni possono essere considerate nuclei atomici giganti tenuti insieme dalla forza gravitazionale.

A causa dell'altissima densità e delle piccole dimensioni una stella di neutroni possiede un campo gravitazionale superficiale cento miliardi (1011) di volte più intenso di quello della Terra. Una delle misure di un campo gravitazionale è la sua velocità di fuga, cioè la velocità che un oggetto deve avere per potergli sfuggire, sulla superficie terrestre essa è di circa 11 km/s, mentre su quella di una stella di neutroni si aggira intorno ai 100000 km/s, cioè un terzo della velocità della luce.

Le stelle di neutroni sono uno dei possibili stadi finali dell'evoluzione stellare e sono quindi a volte chiamate stelle morte o cadaveri stellari. Si formano nelle esplosioni di supernova come il residuo collassato di una stella di grande massa (nelle supernovae di tipo II o Ib) o come il residuo di una nana bianca (nelle supernovae di tipo Ia, ipotesi oggi controversa).

Una tipica stella di neutroni ha un diametro di 20 km, ha una massa minima di 1,4 volte quella del Sole (altrimenti sarebbe rimasta una nana bianca) e una massima di 3 volte quella del Sole (altrimenti collasserebbe in un buco nero). La sua rotazione è spesso molto rapida, la maggior parte delle stelle di neutroni ruota con periodi da 1 a 30 s, ma esistono alcune che arrivano a pochi millesimi di secondo.

La materia alla loro superficie è composta da nuclei ordinari ionizzati. Cominciando a scendere, si incontrano nuclei con quantità sempre più elevate di neutroni. Questi nuclei decadrebbero rapidamente in condizioni normali, ma sono tenuti stabili dall'enorme pressione. Ancora più in profondità si trova una soglia sotto la quale i neutroni liberi si separano dai nuclei e hanno un'esistenza indipendente. In questa regione si trovano nuclei, elettroni liberi e neutroni liberi. I nuclei diventano sempre di meno andando verso il centro, mentre la percentuale di neutroni aumenta. La natura esatta della materia superdensa che si trova al centro non è ancora ben compresa. Alcuni ricercatori si riferiscono ad essa come ad una sostanza teorica, il neutronio. Potrebbe essere una mistura superfluida di neutroni con tracce di protoni ed elettroni, potrebbero essere presenti particelle di alta energia come pioni e kaoni e altri speculano di materia composta da quark subatomici. Finora le osservazioni non hanno né confermato né escluso questi stati "esotici" della materia. Tuttavia, esaminando le curve di raffreddamento di alcune stelle di neutroni conosciute, sembrerebbe confermata l'ipotesi di stati superfluidi (e anche superconduttivi), almeno in alcune zone degli strati interni di tali astri.

Storia delle scoperte[modifica | modifica wikitesto]

Nel 1932, Sir James Chadwick scoprì [1] il neutrone, una nuova particella (che allora si pensava elementare mentre oggi si sa essere composta di quark) che gli valse il premio Nobel del 1935.

Nel 1933 Walter Baade e Fritz Zwicky[2] proposero l'esistenza di stelle interamente composte di neutroni, dopo un solo anno dalla scoperta di Chadwick. Cercando una spiegazione per le origini delle supernovae, proposero che queste producessero delle stelle di neutroni. Baade e Zwicky proposero correttamente che le supernovae sono alimentate dall'energia di legame gravitazionale della stella di neutroni in formazione: "Nel processo della supernova la massa viene annichilata". Se per esempio le parti centrali di una stella massiccia, prima del collasso, ammontano a 3 masse solari, allora si potrebbe formare una stella di neutroni di 2 masse solari. L'energia di legame di una tale stella di neutroni è equivalente, quando espressa in unità di massa usando la famosa equazione E=mc², ad 1 massa solare. È in ultima analisi questa energia che alimenta la supernova.

Tipi di stelle di neutroni osservabili[modifica | modifica wikitesto]

Una stella di neutroni isolata, senza alcuna materia attorno ad essa, è praticamente invisibile: la sua altissima temperatura la porta ad emettere un po' di radiazione visibile, ultravioletta, X e gamma, ma data la sua piccolezza la luce emessa è molto poca e, a distanze astronomiche, non rilevabile. Se però la stella di neutroni ha una compagna, questa può cederle massa. Oppure la stella di neutroni può "alimentarsi" da materia presente nei dintorni, se per esempio sta attraversando una nube di gas. In tutti questi casi la stella di neutroni può manifestarsi sotto varie forme:

  • Pulsar: termine generico indicante una stella di neutroni che emette impulsi direzionali di radiazione rilevabili sulla Terra grazie al suo fortissimo campo magnetico e alla sua radiazione. Funzionano più o meno come un faro rotante o come un orologio atomico.
  • Burster a raggi X - una stella di neutroni con una compagna binaria di piccola massa, dalla quale estrae materia che va a cadere sulla sua superficie. La materia che cade acquista un'enorme energia, ed è irregolarmente visibile.
  • Magnetar - un tipo di ripetitore gamma soft che ha un campo magnetico molto potente.

Rotazione delle stelle di neutroni[modifica | modifica wikitesto]

Le stelle di neutroni ruotano in modo molto rapido dopo la loro creazione, a causa della legge di conservazione del momento angolare: come una pattinatrice che accelera la sua rotazione chiudendo le braccia, la lenta rotazione della stella originale accelera mentre collassa. Una stella di neutroni appena nata può ruotare molte volte al secondo (quella nella Nebulosa del Granchio, nata appena 950 anni fa, ruota 30 volte al secondo). A volte, quando hanno una compagna binaria e possono ricevere da essa nuova materia, la loro rotazione accelera fino a migliaia di volte al secondo, distorcendo la loro forma sferica in un ellissoide, vincendo il loro fortissimo campo gravitazionale (tali stelle di neutroni, in genere scoperte come pulsar, sono chiamate pulsar ultrarapide).

Col tempo, le stelle di neutroni rallentano perché i loro campi magnetici rotanti irradiano energia verso l'esterno. Le stelle di neutroni più vecchie possono impiegare molti secondi o anche minuti per compiere un giro. Questo effetto è detto frenamento magnetico. Nel caso delle pulsar, il frenamento magnetico aumenta l'intervallo tra un impulso e un altro.

Il ritmo a cui una stella di neutroni rallenta la propria rotazione è costante e molto lento: i ritmi osservati sono tra 10-12 e 10-19 secondi al secolo. In altre parole, una stella di neutroni che adesso ruota in esattamente 1 secondo, tra un secolo ruoterà in 1,000000000001 secondi, se è tra quelle che rallentano di più: le più giovani, con un campo magnetico più forte. Le stelle di neutroni con un campo magnetico più debole hanno anche un frenamento magnetico meno efficace, e impiegano più tempo per rallentare. Queste differenze infinitesimali sono comunque misurabili con grande precisione dagli orologi atomici, sui quali ogni osservatore di pulsar si sincronizza.

A volte le stelle di neutroni sperimentano un glitch: un improvviso aumento della loro velocità di rotazione (comunque molto piccolo, comparabile con il rallentamento visto in precedenza). Si pensa che i glitch si originino da riorganizzazioni interne della materia che le compongono, in modo simile ai terremoti terrestri.

Il fenomeno delle pulsar[modifica | modifica wikitesto]

Lo stesso argomento in dettaglio: Pulsar.

Le stelle di neutroni hanno un campo magnetico molto intenso, circa 100 miliardi di volte più intenso di quello terrestre. La materia in arrivo viene letteralmente incanalata lungo le linee di campo magnetico. Gli elettroni viaggiano allontanandosi dalla stella, ruotando attorno ad essa in modo sincrono, finché non raggiungono il punto in cui sarebbero costretti a superare la velocità della luce per continuare a co-ruotare con essa. A questa distanza l'elettrone si deve fermare, e rilascia parte della sua energia cinetica come raggi X e raggi gamma. Gli osservatori esterni vedono questa radiazione quando osservano il polo magnetico. Poiché questo ruota velocemente insieme alla stella, gli osservatori vedono in realtà degli impulsi periodici. Tale fenomeno è detto pulsar.

Quando le pulsar furono scoperte si pensò che potessero essere emissioni da parte di extraterrestri: nessun fenomeno naturale conosciuto a quel tempo poteva spiegare degli impulsi così regolari. Ci volle poco, però, per arrivare alla corretta interpretazione.

Esiste un altro tipo di stella di neutroni, conosciuto come magnetar (contrazione di magnetic e star). Essa presenta campi magnetici ancora più forti, dell'ordine dei 10 GT o più, abbastanza da cancellare una carta di credito dalla distanza del Sole e, si pensa, essere mortali dalla distanza della Luna, a 400.000 chilometri (quest'ultimo dato è solo un'ipotesi, dato che la tecnologia odierna non è in grado di generare campi magnetici così forti da essere mortali).

Note[modifica | modifica wikitesto]

  1. ^ Nature Vol 129, p. 312 on the possible existence of a neutron
  2. ^ Phys. Rev. 45 Supernovae and Cosmic rays

Altri progetti[modifica | modifica wikitesto]

Voci correlate[modifica | modifica wikitesto]

[[Categoria:Classificazione stellare]]