Utente:Grasso Luigi/sanbox1/Desorbimento termico analitico

Da Wikipedia, l'enciclopedia libera.
Vai alla navigazione Vai alla ricerca

Il desorbimento termico analitico, noto nella comunità della chimica analitica semplicemente come "desorbimento termico"(TD), è una tecnica che concentra i VOC nei flussi di gas prima dell'iniezione in una GC. Si utilizza per abbassare i limiti di rivelazione dei metodi GC e per migliorare le prestazioni cromatografiche riducendo l'ampiezza dei picchi[1].

Il desorbimento termico analitico nasce a metà degli anni '70 come adattamento alla procedura di iniezione per GC. Le pareti degli iniettori erano formate da una specie in grado di adsorbire i composti organici, utilizzato per campionare aria o gas, e quindi confluivano all'ingresso del GC. Questo principio è stato ampiamente utilizzato per la prima volta per sviluppare un sistema passivo di analisi dei vapori organici determinando la concentrazione media ponderata nel tempo (TWA) di contaminanti nell'aria. Questo sistema di tipo dosimetro personale raccoglie i vapori organici attraverso il meccanismo molecolare di diffusione e adsorbimento su un elemento di raccolta a carbone attivo. Dopo l'esposizione, il carbone attivo viene rimosso dal dispositivo e si analizzano i contaminanti utilizzando le tecniche gascromatografiche secondo lo standard di analisi fisica e chimica della NIOSH. [2] Queste tecniche offrivano il vantaggio di essere suscettibili di analisi senza una fase separata di estrazione del solvente.

Negli anni '70 è stato sviluppato anche un metodo mediante il quale i volatili nell'aria venivano raccolti per diffusione su tubi confezionati con un assorbente, poi veniva riscaldato per rilasciare i volatili nel sistema GC. Questi sono stati introdotti per la prima volta per il monitoraggio dell'anidride solforosa[3] e diossido di azoto,[4] ma la portata dell'analita in seguito si allargò essendo che i sorbenti diventavano più avanzati. Un altro metodo (strettamente correlato alla moderna procedura di spurgo e trappola) prevedeva il passaggio di un flusso di gas attraverso un campione d'acqua per rilasciare i volatili, che venivano nuovamente raccolti su una provetta imbottita di assorbente.[5]

Tali campionatori di tipo assiale, che in seguito divennero noti come "tubi assorbenti", furono introdotti come standard del settore alla fine degli anni '70, dal Working Group 5 (WG5) della UK Health & Safety's Committee on Analytical Requirements (HSE CAR). I tubi avevano una lunghezza di 3 12 pollici e un diametro esterno di 14 di pollice, e sono stati utilizzati inizialmente nello strumento ATD-50 di Perkin Elmer.[6]

Allo stesso tempo, il WG5 ha specificato vari requisiti di funzionalità di base per il desorbimento termico e, nel tempo, sono stati apportati un certo numero di miglioramenti alla strumentazione, compreso il funzionamento a due stadi (vedi sotto), lo splitting e la raccolta dei campioni, la tecnologia di raffreddamento della trappola, i controlli di sistema standard e l'automazione.

Il desorbimento termico comporta fondamentalmente la raccolta di composti organici volatili su un adsorbente o substrato, che viene riscaldato mentre un flusso di gas rilascia i composti che si concentrano su un volume più piccolo.

Early thermal desorbers used just single-stage operation, whereby the volatiles collected on a sorbent tube were released by heating the tube in a flow of gas, from where they passed directly into the GC.

Modern thermal desorbers can also accommodate two-stage operation, whereby the gas stream from the sorbent tube (typically 100–200 mL) is collected on a narrower tube integral to the thermal desorber, called the focusing trap or cold trap. Heating this trap releases the analytes once again, but this time in an even smaller volume of gas (typically 100–200 μL), resulting in improved sensitivity and better GC peak shape.[1]

Modern thermal desorbers can accommodate both single-stage and two-stage operation, although single-stage operation is now usually carried out using the focusing trap to collect the analytes, rather than a sorbent tube.

It is normal for the focusing trap to be held at or below room temperature, although a temperature no lower than 0 °C is sufficient for all but the most volatile analytes. Higher trap temperatures also reduce the amount of water condensing inside the trap (when transferred to the GC column, water can reduce the quality of the chromatography).

Configurazioni di campionamento

[modifica | modifica wikitesto]

A wide variety of sampling configurations are used for thermal desorption, depending on the application. The most popular are listed below.

Desorbimento termico a uno stadio

[modifica | modifica wikitesto]

This involves sampling direct onto the focusing trap of the thermal desorber. It is generally used for situations where the analytes are too volatile to be retained on sorbent tubes.

  • Bags – Commonly known as 'Tedlar bags', these are made from poly(vinyl fluoride) film.
  • Canisters – These are available in a range of sizes up to 1 L, and are popular especially in the US and Japan for monitoring of air for compounds lighter than about n-dodecane (n-C12H26). The canister is evacuated and allowed to refill with the target atmosphere via a flow regulator.
  • Headspace – The material is placed in a headspace vial or other sampling container, and the headspace introduced directly into the focusing trap. Multiple samplings onto the same trap allow sensitivity to be increased, but it is increasingly common for two-stage thermal desorption to be used instead.
  • On-line – The target atmosphere is simply pumped directly onto the focusing trap.
  • Purge-and-trap – A flow of gas is bubbled through an aqueous sample (a beverage or aqueous extract), and the gas stream then introduced directly into the focusing trap.
  • Solid-phase microextraction – This is based on adsorption of analytes onto a polymer-coated fibre or cartridge.[7] The small sample size taken onto fibres means that analytes are usually desorbed directly into the GC, while the larger cartridges are usually placed in a TD tube and subjected to single-stage thermal desorption.

Desorbimento termico a due stadi

[modifica | modifica wikitesto]

This involves sampling first onto a sorbent tube. The most widely used tubes are those following the pattern laid out by WG5 (see above). After sampling (for which a variety of accessories are available), the tube is desorbed to transfer the analytes to the focusing trap before the second desorption stage transfers them to the GC. The greater sensitivity of this method has made it increasingly popular for sampling dilute gas streams, or in exploratory work where the target atmosphere is unknown.

  • Diffusive (or passive) sampling[8] – A tube is packed with a single sorbent bed and allowed to adsorb analytes from the air diffusively. It is suitable for sampling known compounds over a period of hours (for analyte concentrations of 2–10 μg/m3) to weeks (for analyte concentrations of 0.3–300 μg/m3).
  • Pumped (or active) sampling – A tube is packed with up to three sorbent beds and a flow of the sample gas passed through it. It is suitable for sampling high and low concentrations of known and unknown compounds over timescales of minutes to hours.
  • Direct desorption – This is used for sampling emissions from small pieces of solid or semi-solid materials. The material is placed inside a tube and heated to release the vapours directly into the focusing trap.
  • Headspace – The material is placed in a (micro-)chamber or other sampling container, and a flow of gas passed through it to transfer the headspace dynamically onto a sorbent tube.

The sorbent tube and the focusing trap may be packed with one or more sorbents. The type and number of sorbents depends on a number of factors including the sampling setup, the analyte volatility range, analyte concentration, and the humidity of the sample.[9][10]

One of the most versatile and popular sorbents for thermal desorption is poly(2,6-diphenyl-p-phenylene oxide), known by its trademark Tenax.[11]

Campo dell'analita

[modifica | modifica wikitesto]

Depending upon the sampling technique and the analytical conditions, thermal desorption can be used to reliably sample analytes ranging in volatility from ethane to about tetracontane (n-C40H82). Incompatible compounds include:

  • Many inorganic gases (although N2O, H2S and SF6 can be monitored using TD)
  • Methane
  • Compounds that are thermally unstable
  • Compounds heavier than n-C44H90, didecyl phthalate or 6-ring polycyclic aromatic hydrocarbons boiling above 525 °C.

Applications of thermal desorption were originally restricted to occupational health monitoring, but have since extended to cover a much wider range. Some of the most important are mentioned below – where available, examples of early reports, and more recent citations (including those of widely used standard methods) have been given:

  • Outdoor environmental monitoring[12][13][14]
  • Workplace/occupational health monitoring[2][15][16][17][18]
  • Residual volatiles emitted from products and materials[19][20]
  • Studies of biological systems, including plant–herbivore interactions[21]
  • Breath analysis for disease diagnosis[22]
  • Aroma profiling of food and drink[23][24]
  • Defence/homeland security (detection of chemical agents)[25]
  1. ^ a b (EN) Colin F. Poole, 10, Thermal desorption for gas chromatography (E. Woolfenden), in Gas Chromatography, 1ª ed., Elsevier, 2012, pp. 235–289, DOI:10.1016/C2010-0-66721-6, ISBN 978-0-12-385540-4.
  2. ^ a b (EN) W. J. Lautenberger; E. V. Kring; J. A. Morello., A new personal badge monitor for organic vapors, in American Industrial Hygiene Association Journal, vol. 1980, n. 41, 1980, pp. 737–747, DOI:10.1080/15298668091425581, PMID 7435378.
  3. ^ (EN) E. D. Palmes; A. F. Gunnison, Personal monitoring device for gaseous contaminants, in American Industrial Hygiene Association Journal, vol. 34, n. 2, 1973, pp. 78-81, DOI:10.1080/0002889738506810, PMID 4197577.
  4. ^ (EN) E. D. Palmes; A. F. Gunnison; J. DiMattio; C. Tomczyk, Personal sampler for nitrogen dioxide, in American Industrial Hygiene Association Journal, vol. 37, n. 10, 1976, pp. 570–577, DOI:10.1080/0002889768507522, PMID 983946.
  5. ^ (EN) H.T. Badings; R.P.M. Cooper, Automatic system for rapid analysis of volatile compounds by purge-and-cold-trapping/capillary gas chromatography, in JHRC & CC, vol. 8, n. 11, 1985, pp. 755-763, DOI:10.1002/jhrc.1240081111.
  6. ^ (EN) J. Kristensson, The use of ATD-50 system with fused silica capillaries in dynamic headspace analysis, a cura di P. Schreier, Analysis of volatiles, De Gruyter, 1984, pp. 109-120.
  7. ^ Solid-phase microextraction: a powerful sample preparation tool prior to mass spectrometric analysis, in Journal of Mass Spectrometry, vol. 2004, n. 39, 2004, pp. 233–254, DOI:10.1002/jms.606.
  8. ^ (EN) A. L. Sunesson, Passive sampling in combination with thermal desorption and gas chromatography as a tool for assessment of chemical exposure, a cura di R. Greenwood; G. Mills; B. Vrana;, Comprehensive Analytical Chemistry, vol. 48 Passive Sampling Techniques in Environmental Monitoring, Elsevier, 2007.
  9. ^ Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air. Part 1: Sorbent-based air monitoring options, in Journal of Chromatography A, vol. 1217, n. 16, 2010, pp. 2674–2684, DOI:10.1016/j.chroma.2009.12.042.
  10. ^ Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air. Part 2. Sorbent selection and other aspects of optimizing air monitoring methods, in Journal of Chromatography A, vol. 1217, n. 16, 2010, pp. 2685–2694, DOI:10.1016/j.chroma.2010.01.015.
  11. ^ Concentration and analysis of trace volatile organics in gases and biological fluids with a new solid adsorbent, in Chromatographia, vol. 6, n. 2, 1973, pp. 67–70, DOI:10.1007/BF02270540.
  12. ^ Use of graphitized carbon black in environmental analysis, in Journal of Chromatography, vol. 99, 1974, pp. 661–672, DOI:10.1016/s0021-9673(00)90893-8.
  13. ^ A syringe and cartridge method for down-hole sampling for trace organics in ground water, in Ground Water, vol. 22, n. 3, 1984, pp. 330–339, DOI:10.1111/j.1745-6584.1984.tb01405.x.
  14. ^ US EPA Compendium Method TO-17: Determination of volatile organic compounds in ambient air using active sampling onto sorbent tubes, US Environmental Protection Agency, January 1999, PDF
  15. ^ W.R. Betz, S.G. Maroldo, G.D. Wachob and M.C. Firth, Characterization of carbon molecular sieves and activated charcoal for use in airborne contaminant sampling, American Industrial Hygiene Association Journal, 1989, 50: 181–187.
  16. ^ Passive monitors for the determination of personal nitrous oxide exposure levels, in Anaesthesia, vol. 37, n. 4, 1982, pp. 467–468, DOI:10.1111/j.1365-2044.1982.tb01175.x.
  17. ^ MDHS 80, Laboratory method using diffusive solid sorbent tubes, thermal desorption and gas chromatography, UK Health & Safety Executive, August 1995, PDF
  18. ^ Workplace monitoring for VOCs using thermal desorption-GC-MS, in Journal of Environmental Monitoring, vol. 2002, n. 4, pp. 679–684.
  19. ^ E. Woolfenden, Standardized methods for testing emissions of organic vapors from building products to indoor air, in: Organic Indoor Air Pollutants (2nd edn), ed. T. Salthammer and E. Uhde, Wiley-VCH, 2009, chapter 6, http://eu.wiley.com/WileyCDA/WileyTitle/productCd-3527312676.html.
  20. ^ Method VDA 278: Thermal Desorption Analysis of Organic Emissions for the Characterization of Non-Metallic Materials for Automobiles, October 2011, http://www.vda.de/en/publikationen/publikationen_downloads/detail.php?id=1027.
  21. ^ Defensive function of herbivore-induced plant volatile emissions in nature, in Science, vol. 291, n. 5511, 2001, pp. 2141–2144, DOI:10.1126/science.291.5511.2141.
  22. ^ The diagnostic potential of breath analysis, in Clinical Chemistry, vol. 29, 1983, pp. 5–15, DOI:10.1093/clinchem/29.1.5.
  23. ^ E. Woolfenden, Flavour and fragrance profiling by ATD/GC, Laboratory Equipment Digest, April 1989, pp. 23–25.
  24. ^ Enhanced GC-MS aroma profiling using thermal desorption technologies, in Separation Science, vol. 2008, n. 1, pp. 16–23.
  25. ^ Workplace chemical monitoring: Monitoring considerations, in: Occupational Health and Workplace Monitoring at Chemical Agent Disposal Facilities, Board on Army Science and Technology (National Research Council), 2001, chapter 2.
  Portale Chimica: il portale della scienza della composizione, delle proprietà e delle trasformazioni della materia