Tetrazione

Da Wikipedia, l'enciclopedia libera.

La tetrazione è la quarta operazione aritmetica, dopo somma, prodotto e potenza. Le relative operazioni inverse della tetrazione sono la superradice e il superlogaritmo.

La tetrazione è una serie di esponenti:

che si legge "a tetratto " o "a torre ".

Quando, in una potenza, l'esponente è troppo lungo da scrivere, il numero potrebbe essere riscritto sotto forma di iperpotenza:

La tetrazione è il minimo iper-operatore caratterizzato dalla cosiddetta "convergenza p-adica" (cfr. Numero p-adico). Fissata la base di numerazione, calcolando (con ed interi positivi) le ultime cifre resteranno immutate per (con ), a partire da un certo valore .

Se si considera il numero di cifre del generico numero si ottiene la sequenza di Joyce, corrispondente alla successione A054382 dell'OEIS.

Bibliografia[modifica | modifica wikitesto]

  • Marco Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, 2011. ISBN 978-88-6178-789-6
  • (EN) Constantin A. Rubstov, Giovanni F. Romerio, (2004): Ackermann's function and new arithmetical operations, Web publication

Voci correlate[modifica | modifica wikitesto]

Altri progetti[modifica | modifica wikitesto]

Matematica Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica