Matteo Carandini

Da Wikipedia, l'enciclopedia libera.
Vai alla navigazione Vai alla ricerca

Matteo Carandini (Roma, 1967) è un neuroscienziato italiano, studioso dell'apparato visivo.

Biografia[modifica | modifica wikitesto]

Matteo Carandini è figlio di Guido Carandini e nipote di Nicolò Carandini. Dopo essersi laureato a Roma e aver conseguito il dottorato in Scienze neurologiche alla New York University ha lavorato presso varie università statunitensi ed europee. Dal 2007 è professore allo University College London. Studia il Nucleo genicolato laterale, la corteccia visiva primaria, l'attività di neuroni individuali e le comunicazioni tra questi ultimi con la corteccia visiva primaria, con un particolare interesse verso la funzione dell'occhio, del talamo e dell'area visiva primaria. Carandini conduce le sue ricerche con lo scopo di contribuire alla conoscenza di come il cervello processa le informazioni visive nel cervello umano. Lavora principalmente con i topi, selezionati come cavie da laboratorio per la loro caratteristica di organismo modello. Dal 2017 è a capo del più grande laboratorio virtuale sul cervello, l'International Brain Lab, che unisce 21 centri di ricerca fra Europa e Stati Uniti, finanziato da Wellcome Trust e Simons Foundation.

Bibliografia[modifica | modifica wikitesto]

  • Okun, Steinmetz, …, Mrsic-Flogel, Carandini, and Harris, "Diverse coupling of neurons to populations in sensory cortex", Nature.
  • Madisen, Garner, Shimaoka,…, Reid, Carandini, and Zeng, "Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance". Neuron.
  • Carandini, Shimaoka, Rossi, Sato, Benucci, and Knöpfel, "Imaging the awake visual cortex with a genetically-encoded voltage indicator", J Neurosci.
  • Schölvinck, Saleem, Benucci, Harris, and Carandini, "Cortical state determines global variability and correlations in visual cortex", J Neurosci.
  • Schröder and Carandini, "A cortical rein on the tectum's gain", Neuron.
  • Dhruv and Carandini, "Cascaded effects of spatial adaptation in the early visual system", Neuron.
  • Sato, Häusser, and Carandini, "Distal connectivity mediates summation and division across mouse visual cortex", Nature Neuroscience.
  • Pisauro, Dhruv, Carandini, and Benucci, "Fast hemodynamic signals in the visual cortex of the awake mouse", J Neurosci.
  • Saleem, Ayaz, Jeffery, Harris, and Carandini, "Integration of visual motion and locomotion in mouse primary visual cortex", Nature Neuroscience.
  • Carandini and Churchland, "Probing perceptual decisions in rodents", Nature Neuroscience.
  • Ayaz, Saleem, Schölvinck, and Carandini, "Locomotion controls spatial integration in mouse visual cortex", Current Biology.
  • Benucci, Saleem, and Carandini, "Adaptation maintains population homeostasis in primary visual cortex", Nature Neuroscience.
  • Haider, Häusser, and Carandini, "Inhibition dominates sensory responses in the awake cortex", Nature.
  • Okun, Yger, Marguet, Gerard-Mercier, Benucci, Katzner, Busse, Carandini, and Harris, "Population rate dynamics and multineuron firing patterns in sensory cortex", J Neurosci.
  • Sato, Nauhaus and Carandini, "Traveling waves in visual cortex", Neuron.
  • Pearson, Barber, Benucci, Carandini, Yau, Sowden, and Ali, "Restoration of vision after transplantation of photoreceptors", Nature.
  • Carandini, "From circuits to behavior: a bridge too far?", Nature Neuroscience.
  • Nauhaus, Busse, Ringach, and Carandini, "Robustness of traveling waves in ongoing activity of visual cortex", J Neurosci.
  • Carandini, "Area V1", Scholarpedia.
  • Atallah, Bruns, Carandini, and Scanziani, "Parvalbumin-expressing interneurons linearly transform cortical responses to visual stimuli", Neuron.
  • Carandini and Heeger, "Normalization as a canonical neural computation", Nature Reviews Neuroscience.
  • Busse, Ayaz, Dhruv, Katzner, Saleem, Schölvinck, Zaharia, and Carandini, "The detection of visual contrast in the behaving mouse" [video], J Neurosci.
  • Katzner, Busse, and Carandini, “GABAa inhibition controls response gain in visual cortex”, J Neurosci.
  • Schulz and Carandini, “An uncorrelated state for the cortex?”, F1000 Biology Reports.
  • Busse, Wade, and Carandini, "Representation of concurrent stimuli by population activity in visual cortex" [revised Supplementary materials], Neuron.
  • Benucci, Ringach, and Carandini, "Coding of stimulus sequences by population responses in visual cortex", Nature Neuroscience.
  • Katzner, Nauhaus, Benucci, Bonin, Ringach, and Carandini, "Local origin of field potentials in visual cortex", Neuron.
  • Nauhaus, Busse, Carandini, and Ringach, "Stimulus contrast modulates functional connectivity in visual cortex", Nature Neuroscience.
  • Mante, Bonin, and Carandini, "Functional mechanisms shaping lateral geniculate responses to artificial and natural stimuli", Neuron.
  • Nauhaus, Benucci, Carandini, and Ringach, "Neuronal selectivity and local map structure in visual cortex", Neuron.
  • Carandini, Horton, and Sincich, "Thalamic filtering of retinal spike trains by postsynaptic summation", J of Vision.
  • Benucci, Frazor, and Carandini, “Standing waves and traveling waves distinguish two circuits in visual cortex”, Neuron.
  • Frazor, Benucci, and Carandini, "Independent Encoding of Position and Orientation by Population Responses in Primary Visual Cortex", in Advances in Brain, Vision, and Artificial Intelligence, pp. 30-41, Springer.
  • Durand, Freeman, and Carandini, “Temporal properties of surround suppression in cat primary visual cortex”, Visual Neuroscience.
  • Majaj, Carandini, and Movshon, “Motion integration by neurons in macaque MT is local, not global”, J Neurosci.
  • Carandini, “Melting the iceberg: contrast invariance in visual cortex”, Neuron.
  • Bonin, Mante, and Carandini, “The statistical computation underlying contrast gain control”, J Neurosci.
  • Carandini, “What simple cells and complex cells compute”, J Physiol.
  • Carandini, “Measuring the brain's assumptions”, Nature Neuroscience.
  • Carandini, "How do we look?", The Scientist.
  • Bonin, Mante, and Carandini, “The suppressive field of neurons in lateral geniculate nucleus”, J Neurosci.
  • Mante, Frazor, Bonin, Geisler, and Carandini, “Independence of luminance and contrast in natural scenes and in the early visual system”, Nature Neuroscience.
  • Carandini, Demb, Mante, Olshausen, Tolhurst, Dan, Gallant, and Rust “Do we know what the early visual system does?”, J Neurosci.
  • Petrov, Carandini, and McKee, “Two distinct mechanisms of suppression in human vision”. J Neurosci.
  • Gabernet, Jadhav, Feldman, Carandini, and Scanziani, “Somatosensory integration controlled by dynamic thalamocortical feed-forward inhibition”. Neuron.
  • Mante and Carandini, “Mapping of stimulus energy in primary visual cortex”, J Neurophysiol.
  • Carandini, "Amplification of trial-to-trial response variability by neurons in visual cortex" PLoS Biology.
  • Priebe, Mechler, Carandini, and Ferster, "The contribution of spike threshold to the dichotomy of cortical simple and complex cells", Nature Neuroscience.
  • Carandini and Sengpiel, “Contrast invariance of functional maps in cat primary visual cortex”, J of Vision.
  • Carandini, “Receptive fields and suppressive fields in the early visual system”. In The Cognitive Neurosciences, 3d ed., Gazzaniga, ed., MIT Press.
  • Bonin, Mante, and Carandini, "Nonlinear processing in LGN neurons". In Advances in Neural Information Processing Systems 16, Thrun, Saul, and Schölkopf, eds., MIT Press.
  • Mante and Carandini, “Visual cortex: seeing motion”, Current Biology.
  • Carandini, Heeger, and Senn, "A synaptic explanation of suppression in visual cortex" [Code][Appendix], J Neurosci.
  • Freeman, Durand, Kiper and Carandini, "Suppression without inhibition in visual cortex", Neuron.
  • Hürlimann, Kiper, and Carandini, "Testing the Bayesian model of motion perception", Vision Research.
  • Meier and Carandini, "Masking by fast gratings", J of Vision.
  • Kiper and Carandini, "Neural basis of pattern vision", Encyclopedia of Cognitive Science, MacMillan.
  • Carandini and Ferster, "Membrane potential and firing rate in cat primary visual cortex", J Neurosci.
  • Anderson, Carandini, and Ferster, “Orientation tuning of input conductance, excitation and inhibition in cat primary visual cortex” J Neurophysiol.
  • Anderson, Lampl, Reichova, Carandini, and Ferster, "Stimulus dependence of two-state fluctuations of membrane potential in cat visual cortex", Nature Neuroscience.
  • Carandini, "Visual cortex: fatigue and adaptation", Current Biology.
  • Carandini, Heeger, and Movshon, "Linearity and gain control in V1 simple cells", in Cerebral Cortex. Vol. 13: Models of cortical circuits, Ulinski, Jones and Peters (Eds.), Plenum.
  • Carandini, Movshon, and Ferster, "Pattern adaptation and cross-orientation interactions in theprimary visual cortex", Neuropharmacology.
  • Carandini, Heeger, and Movshon, "Linearity and normalization in simple cells of the macaque primary visual cortex", J Neurosci.
  • Carandini and Ringach, "Predictions of a recurrent model of orientation selectivity" [code], Vision Research.
  • Carandini, Barlow, Poirson, O'Keefe, and Movshon, "Adaptation to contingencies in macaque primary visual cortex", Phil Trans R Soc London, B.
  • Carandini and Ferster, "A tonic hyperpolarization underlying contrast adaptation in the visual cortex", Science.
  • Carandini, Mechler, Leonard, and Movshon, "Spike train encoding by regular-spiking cells of the visual cortex", J Neurophysiol.
  • Carandini "Linearity, gain control, and spike encoding in the primary visual cortex", PhD Thesis, New York University.
  • Carandini and Heeger, "Summation and division in V1 simple cells", in The Neurobiology of Computation, Bower (Ed.), Kluwer.
  • Carandini and Heeger, "Summation and division by neurons in visual cortex", Science.
  • Gegenfurtner, Kiper, Beusmans, Carandini, Zaidi, and Movshon, "Chromatic properties of neurons in macaque MT", Visual Neuroscience.

Voci correlate[modifica | modifica wikitesto]

Collegamenti esterni[modifica | modifica wikitesto]

Controllo di autoritàVIAF (EN507145857117622922525 · ORCID (EN0000-0003-4880-7682 · LCCN (ENn2007182570 · GND (DE1089313136 · WorldCat Identities (ENlccn-n2007182570