Vuoto di Taub-NUT

Da Wikipedia, l'enciclopedia libera.

Il vuoto di Taub-NUT è una soluzione esatta per le equazioni di Einstein, un modello di universo formulato nell'ambito della struttura della relatività generale, omogeneo ma anisotropico, basato su una soluzione pubblicata da Abraham Haskel Taub nel 1951[1].

Note[modifica | modifica wikitesto]

  1. ^ (EN) A. H. Taub, Empty space-times admitting a three parameter group of motions, Ann. Math., 53 (1951), 472-490.

Bibliografia[modifica | modifica wikitesto]

  • Krasiński, A., Inhomogeneous Cosmological Models, Cambridge, Cambridge University Press, 1997, ISBN 0-521-48180-5.
  • MacCallum, M. A. H., Finding and using exact solutions of the Einstein equations, in AIP Conference Proceedings, AIPConf.Proc., vol. 841, 2006, pp. 129–143, Bibcode:2006AIPC..841..129M, DOI:10.1063/1.2218172, arXiv:gr-qc/0601102. An up-to-date review article, but too brief, compared to the review articles by Bičák or Bonnor et al. (see below).
  • Rendall, Alan M., Local and Global Existence Theorems for the Einstein Equations, su Living Reviews in Relativity. URL consultato l'11 agosto 2005. A thorough and up-to-date review article.
  • Friedrich, Helmut, Is general relativity 'essentially understood' ?, in Annalen der Physik, vol. 15, 2005, pp. 84–108, Bibcode:2006AnP...518...84F, DOI:10.1002/andp.200510173, arXiv:gr-qc/0508016. An excellent and more concise review.
  • Bičák, Jiří, Selected exact solutions of Einstein's field equations: their role in general relativity and astrophysics, in Lect. Notes Phys., Lecture Notes in Physics, vol. 540, 2000, pp. 1–126, DOI:10.1007/3-540-46580-4_1, ISBN 978-3-540-67073-5, arXiv:gr-qc/0004031. An excellent modern survey.
  • Bonnor, W. B.; Griffiths, J. B.; & MacCallum, M. A. H., Physical interpretation of vacuum solutions of Einstein's equations. Part II. Time-dependent solutions, in Gen. Rel. Grav., vol. 26, nº 7, 1994, pp. 637–729, Bibcode:1994GReGr..26..687B, DOI:10.1007/BF02116958.
  • Bonnor, W. B., Physical interpretation of vacuum solutions of Einstein's equations. Part I. Time-independent solutions, in Gen. Rel. Grav., vol. 24, nº 5, 1992, pp. 551–573, Bibcode:1992GReGr..24..551B, DOI:10.1007/BF00760137. A wise review, first of two parts.
  • Griffiths, J. B., Colliding Plane Waves in General Relativity, Oxford, Clarendon Press, 1991, ISBN 0-19-853209-1. The definitive resource on colliding plane waves, but also useful to anyone interested in other exact solutions. available online by the author
  • Hoenselaers, C.; & Dietz, W., Solutions of Einstein's Equations: Techniques and Results, New York, Springer, 1985, ISBN 3-540-13366-6.
  • Ehlers, Jürgen; & Kundt, Wolfgang, Exact solutions of the gravitational field equations, in Witten, L. (a cura di), Gravitation: An Introduction to Current Research, New York, Wiley, 1962, pp. 49–101. A classic survey, including important original work such as the symmetry classification of vacuum pp-wave spacetimes.
  • Stephani, Hans; Dietrich Kramer; Malcolm MacCallum; Cornelius Hoenselaers & Eduard Herlt, Exact Solutions of Einstein's Field Equations, 2nd, Cambridge, Cambridge University Press, 2009, ISBN 978-0-521-46702-5.

Collegamenti esterni[modifica | modifica wikitesto]