Torre di Hanoi

Da Wikipedia, l'enciclopedia libera.
Torre di Hanoi ad otto dischi

La Torre di Hanoi è un rompicapo matematico composto da tre paletti e un certo numero di dischi di grandezza decrescente, che possono essere infilati in uno qualsiasi dei paletti.

Il gioco inizia con tutti i dischi incolonnati su un paletto in ordine decrescente, in modo da formare un cono. Lo scopo del gioco è portare tutti i dischi sull'ultimo paletto, potendo spostare solo un disco alla volta e potendo mettere un disco solo su un altro disco più grande, mai su uno più piccolo.

Origini[modifica | modifica sorgente]

Il gioco fu inventato dal matematico francese Edouard Lucas nel 1883[1] che diffuse il gioco sotto lo pseudonimo di N. Claus de Siam, mandarino del collegio di Li-Sou-Stian.[2] La leggenda secondo la quale in un tempio Indù alcuni monaci sono costantemente impegnati a spostare su tre colonne di diamante 64 dischi d'oro secondo le regole della Torre di Hanoi (a volte chiamata Torre di Brahma), è stata inventata dalla ditta che per prima ha messo in commercio il rompicapo. La leggenda narra che quando i monaci completeranno il lavoro, il mondo finirà. Esistono del rompicapo anche versioni per videogiochi.[3][4]

Soluzione[modifica | modifica sorgente]

Soluzione Torre di Hanoi a quattro dischi

La proprietà matematica base è che il numero minimo di mosse necessarie per completare il gioco è 2^n-1, dove n è il numero di dischi. Ad esempio avendo 3 dischi, il numero di mosse minime è 7. Di conseguenza, secondo la leggenda, i monaci di Hanoi dovrebbero effettuare almeno 18.446.744.073.709.551.615 mosse prima che il mondo finisca, essendo  n = 64 . In altre parole, anche supponendo che i monaci facciano una mossa al secondo il mondo finirà tra 5.845.580.504 secoli, un tempo così lungo che quando il sole diverrà una gigante rossa e brucerà la Terra, il gioco non sarà stato completato.[5]

La soluzione generale è data dall'algoritmo seguente.

Algoritmo ricorsivo[modifica | modifica sorgente]

La soluzione base del gioco della torre di Hanoi si formula in modo ricorsivo.[6][7]

Siano i paletti etichettati con A, B e C, e i dischi numerati da 1 (il più piccolo) a n (il più grande). L'algoritmo si esprime come segue:

  1. Sposta i primi n-1 dischi da A a B. (Questo lascia il disco n da solo sul paletto A)
  2. Sposta il disco n da A a C
  3. Sposta n-1 dischi da B a C

Per spostare n dischi si richiede di compiere un'operazione elementare (spostamento di un singolo disco) ed una complessa, ossia lo spostamento di n-1 dischi. Tuttavia anche questa operazione si risolve nello stesso modo, richiedendo come operazione complessa lo spostamento di n-2 dischi. Iterando questo ragionamento si riduce il processo complesso ad uno elementare, ovvero lo spostamento di n-(n-1)=1 disco.

Questo è un algoritmo ricorsivo,[6] di complessità esponenziale.

È interessante notare che il rompicapo è risolvibile per qualsiasi "n", con una dimostrazione per ricorrenza: Supponiamo di avere una torre in A composta da N dischi, e supponiamo che N sia il numero massimo di dischi ammessi per risolvere il gioco. Al termine dello spostamento della torre da A a B, aggiungiamo un ulteriore disco ad A, di grandezza pari a N+1, e ipotizziamo che questo disco sia stato fermo tutto il tempo sotto gli altri. A questo punto, spostiamo semplicemente il disco da A a C, e certamente riusciremo a spostare la torre da B a C, seguendo gli stessi passaggi che si sono resi necessari per spostarla da A a B. Avendo dimostrato che una torre di N dischi è spostabile da una colonna all'altra, è dimostrato che si può spostare anche una torre di N+1 dischi.

Note[modifica | modifica sorgente]

  1. ^ (EN) Lucas summary.
  2. ^ (EN) The Tower of Hanoi.
  3. ^ (EN) Hanoi: Sega Dreamcast Game Console (Animated).
  4. ^ (EN) Hanoi: Nintendo Gameboy Advance Handheld (Animated).
  5. ^ Progetto Polymath - La torre di Hanoi.
  6. ^ a b (EN) Tower of Hanoi.
  7. ^ www.matematicamente.it.

Bibliografia[modifica | modifica sorgente]

Voci correlate[modifica | modifica sorgente]

Altri progetti[modifica | modifica sorgente]

Collegamenti esterni[modifica | modifica sorgente]

matematica Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica