Niobato di potassio

Da Wikipedia, l'enciclopedia libera.
(Reindirizzamento da KNbO3)
Vai alla navigazione Vai alla ricerca
Niobato di potassio
Nomi alternativi
ossido di niobio e potassio
Caratteristiche generali
Formula bruta o molecolareKNbO3
Massa molecolare (u)180,003 g·mol−1
Aspettocristalli bianchi romboedrici
Numero CAS12030-85-2
Numero EINECS234-744-4
PubChem16217044
SMILES
[O-][Nb](=O)=O.[K+]
Proprietà chimico-fisiche
Densità (g/cm3, in c.s.)4,640 g/cm3
Temperatura di fusione1100 °C[1]
Proprietà tossicologiche
DL50 (mg/kg)3000 mg/kg (orale, ratti)
Indicazioni di sicurezza

Il niobato di potassio è un composto inorganico del niobio e del potassio con formula KNbO3. Solido incolore, è classificato come materiale ferroelettrico della famiglia delle perovskiti. Presenta proprietà ottiche non lineari ed è un componente di alcuni laser[2]. Nanofili di niobato di potassio sono stati utilizzati per produrre luce coerente sintonizzabile.

Struttura[modifica | modifica wikitesto]

Durante il raffreddamento da alta temperatura, il niobato di potassio subisce una serie di transizioni di fase strutturali. A 435 °C, la simmetria cristallina cambia da centrosimmetrica cubica (gruppo spaziale Pm3m, n°221) a non centrosimmetrica tetragonale (gruppo spaziale P4mm, n°99). Con un ulteriore raffreddamento, a 225 °C la simmetria cristallina cambia da tetragonale (P4mm) a ortorombica (gruppo spaziale Amm2, n°38) e a -50 °C da ortorombica (Amm2) a romboedrica (gruppo spaziale R3m, n°160).

Applicazioni e ricerca[modifica | modifica wikitesto]

Oltre alla ricerca sull'archiviazione elettronica della memoria[3], il niobato di potassio viene utilizzato nel raddoppio della frequenza di risonanza[4]. Questa tecnica consente ai piccoli laser a infrarossi di convertire l'output in luce blu, una tecnologia fondamentale per la produzione di laser blu e per la tecnologia da essi dipendente.

Il niobato di potassio ha trovato utilità in molte aree diverse della scienza dei materiali[3], comprese le proprietà dei laser[4] il teletrasporto quantistico[5], ed è stato utilizzato per studiare le proprietà ottiche dei materiali compositi particellari[6].

Note[modifica | modifica wikitesto]

  1. ^ (EN) Lide David R., CRC Handbook of Chemistry and Physics, 90ª ed., Boca Raton (Florida, USA), CRC Press, 2009, ISBN 978-1-4200-9084-0.
  2. ^ (EN) Edward D. Palik, Handbook of Optical Constants of Solids 3, Academic Press, 1998, p. 821, ISBN 978-0-12-544423-1. URL consultato il 13 dicembre 2012.
  3. ^ a b (EN) In Science Fields, in The Science News-Letter, vol. 62, n. 17, 25 ottobre 1952, pp. 264–265, DOI:10.2307/3931381.
  4. ^ a b (EN) Antonio Regalado, Blue-Light Special, in Science, vol. 267, n. 5206, 31 marzo 1995, p. 1920, DOI:10.1126/science.267.5206.1920, PMID 17770099.
  5. ^ (EN) A. Furusawa, J. L. Sørensen, S.L. Braunstein, C.A. Fuchs, H.J. Kimble e E.S. Polzik, Unconditional Quantum Teleportation, in Science, vol. 282, n. 5389, 23 ottobre 1998, pp. 706–709, DOI:10.1126/science.282.5389.706, PMID 9784123.
  6. ^ (EN) A. Lakhtakia e Tom G. Mackay, Electrical Control of the Linear Optical Properties of Particulate Composite Materials, in Proceedings of the Royal Society A, vol. 463, n. 2078, 8 febbraio 2007, pp. 583–592, DOI:10.1098/rspa.2006.1783.

Voci correlate[modifica | modifica wikitesto]

Altri progetti[modifica | modifica wikitesto]

  Portale Chimica: il portale della scienza della composizione, delle proprietà e delle trasformazioni della materia