Grafo connesso

Da Wikipedia, l'enciclopedia libera.
Un grafo connesso con 4 nodi e 4 archi

In teoria dei grafi, un grafo G = (V, E) è detto connesso se, per ogni coppia di vertici (u, v) ∈ V, esiste un cammino che collega u a v[1]. Un sottografo connesso massimale di un grafo non orientato è detto componente connessa di tale grafo. Di conseguenza, un grafo è connesso se esso è composto di una sola componente connessa.

Voci correlate[modifica | modifica sorgente]

Riferimenti bibliografici[modifica | modifica sorgente]

  1. ^ Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein. Introduction to Algorithms. MIT Press, 2009 (terza edizione).